Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/cellsurvLQdiff.R
The function does an ANOVA test for overall comparison of the parameters alpha and beta of two linear-quadratic cell survival curves. The parameters are fitted simultaneously to the data with this function, i.e. no other function is necessary to derive the fits.
1 | cellsurvLQdiff(X, curvevar, method="ml", PEmethod="fit")
|
X |
A data frame which contains columns |
curvevar |
Character string, which has to be one of the column names of the data frame |
method |
Determines the method used for the fit. |
PEmethod |
Controls the value of the plating efficiencies, i.e. the colony counts for untreated cells. |
In the data frame X
, Exp
identifies the experimental replicates and may be numeric or non-numeric. method="ml"
for maximum-likelihood uses R function glm
with family
"quasipoisson" and link function "log"
. method="ls"
uses R function lm
.
The function returns an object of class cellsurvLQdiff
containing three elements, fit1
, fit2
and anv
. fit1
and fit2
are objects of class glm
when method="ml"
or of class lm
when method="ls"
. fit1
has parameters alpha and beta fitted in common for both cell survival curves. fit2
has parameters alpha and beta fitted differently for both curves. anv
is of class anova
and contains the F-test. Test results are printed, however, the full result inlcuding curve parameters is returned invisibly, i.e. the function has to be used with print
or assigned to a variable, say for e.g. fitcomp
as in the example below.
Herbert Braselmann
glm
and family
with references for generalized linear modelling. anova
, cellsurvLQfit
.
1 2 3 4 5 6 7 8 9 10 11 12 13 | datatab<- read.table(system.file("doc", "expl1_cellsurvcurves.txt", package="CFAssay"), header=TRUE, sep="\t")
names(datatab) #contains a column "cline"
table(datatab$cline)
fitcomp<- cellsurvLQdiff(datatab, curvevar="cline") #using default options
print(fitcomp)
plot(cellsurvLQfit(subset(datatab, cline=="okf6TERT1")), col=1)
plot(cellsurvLQfit(subset(datatab, cline=="cal33")), col=2, add=TRUE)
legend(0, 0.02, c("okf6TERT1", "cal33"), text.col=1:2)
#using different options:
print(cellsurvLQdiff(datatab, curvevar="cline", method="ls"))
print(cellsurvLQdiff(datatab, curvevar="cline", PEmethod="fix"))
print(cellsurvLQdiff(datatab, curvevar="cline", method="ls", PEmethod="fix"))
print(cellsurvLQdiff(datatab, curvevar="cline", method="franken"))
|
[1] "cline" "Exp" "dose" "ncells" "ncolonies"
cal33 okf6TERT1
24 48
*** Overall comparison for two linear-quadratic cell survival curves ***
Compared curves: cal33 okf6TERT1
method: ml
PEmethod: fit
Test used: F-test
F Pr(>F)
values 7.3509 0.001463 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Use 'print' to see detailed results
Overall comparison test for coefficients alpha and beta of LQ-models
====================================================================
method = ml
PEmethod = fit
12 PEs fitted as intercepts. To look at, use simple R print function.
Null hypothesis (Model 1): one set of shape parameters alpha and beta for all data
----------------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha -0.39893900 0.047865098 -8.334653 1.687495e-11
beta -0.03434671 0.007828292 -4.387510 4.906364e-05
Goodness-of-fit values
Residual Deviance: 317.2604
Total sum of squared weighted residuals rsswTot: 319.7611
Residual Degrees of Freedom: 58
Dispersion parameter: 5.513123
Alternative hypothesis (Model 2): two sets of shape parameters alpha and beta
-----------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha:curvescal33 -0.26831918 0.062588637 -4.287027 7.206618e-05
alpha:curvesokf6TERT1 -0.51937898 0.059669207 -8.704305 5.439622e-12
beta:curvescal33 -0.04892355 0.010058934 -4.863691 9.739225e-06
beta:curvesokf6TERT1 -0.02102614 0.009918948 -2.119795 3.846873e-02
Goodness-of-fit values
Residual Deviance: 251.804
Total sum of squared weighted residuals rsswTot: 249.3271
Residual Degrees of Freedom: 56
Dispersion parameter: 4.452269
Analysis of Variance Table and F-test
Model 2 versus Model 1
Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 58 317.26
2 56 251.80 2 65.456 7.3509 0.001463 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
method = ml
PEmethod = fit
dose dose2
-0.51937898 -0.02102614
Use 'print' to see detailed results
method = ml
PEmethod = fit
dose dose2
-0.26831918 -0.04892355
Use 'print' to see detailed results
*** Overall comparison for two linear-quadratic cell survival curves ***
Compared curves: cal33 okf6TERT1
method: ls
PEmethod: fit
Test used: F-test
F Pr(>F)
values 8.5624 0.0005695 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Use 'print' to see detailed results
Overall comparison test for coefficients alpha and beta of LQ-models
====================================================================
method = ls
PEmethod = fit
12 PEs fitted as intercepts. To look at, use simple R print function.
Null hypothesis (Model 1): one set of shape parameters alpha and beta for all data
----------------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha -0.44210271 0.058993395 -7.494105 4.330475e-10
beta -0.03097808 0.009374666 -3.304446 1.634899e-03
Goodness-of-fit values
Total sum of squared residuals rssTot: 5.138071
Residual Degrees of Freedom: 58
Multiple R-squared: 0.95907
Alternative hypothesis (Model 2): two sets of shape parameters alpha and beta
-----------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha:curvescal33 -0.25601286 0.09100092 -2.813300 6.751349e-03
alpha:curvesokf6TERT1 -0.53514763 0.06434737 -8.316543 2.336628e-11
beta:curvescal33 -0.04744575 0.01446100 -3.280946 1.783720e-03
beta:curvesokf6TERT1 -0.02274424 0.01022547 -2.224274 3.017867e-02
Goodness-of-fit values
Total sum of squared residuals rssTot: 3.934809
Residual Degrees of Freedom: 56
Multiple R-squared: 0.9686552
Analysis of Variance Table and F-test
Model 2 versus Model 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 58 5.1381
2 56 3.9348 2 1.2033 8.5624 0.0005695 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
*** Overall comparison for two linear-quadratic cell survival curves ***
Compared curves: cal33 okf6TERT1
method: ml
PEmethod: fix
Test used: F-test
F Pr(>F)
values 19.637 3.45e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Use 'print' to see detailed results
Overall comparison test for coefficients alpha and beta of LQ-models
====================================================================
method = ml
PEmethod = fix
Null hypothesis (Model 1): one set of shape parameters alpha and beta for all data
----------------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha -0.36939379 0.048055945 -7.686745 2.054860e-10
beta -0.03910804 0.009968124 -3.923310 2.339076e-04
Goodness-of-fit values
Residual Deviance: 897.6402
Total sum of squared weighted residuals rsswTot: 841.7324
Residual Degrees of Freedom: 58
Dispersion parameter: 14.51263
Alternative hypothesis (Model 2): two sets of shape parameters alpha and beta
-----------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha:curvescal33 -0.22802046 0.05241601 -4.350207 5.815804e-05
alpha:curvesokf6TERT1 -0.51079080 0.05609421 -9.105946 1.216308e-12
beta:curvescal33 -0.05423143 0.01101630 -4.922835 7.891563e-06
beta:curvesokf6TERT1 -0.02274661 0.01150507 -1.977095 5.296198e-02
Goodness-of-fit values
Residual Deviance: 538.1011
Total sum of squared weighted residuals rsswTot: 512.6458
Residual Degrees of Freedom: 56
Dispersion parameter: 9.154389
Analysis of Variance Table and F-test
Model 2 versus Model 1
Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 58 897.64
2 56 538.10 2 359.54 19.637 3.45e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
*** Overall comparison for two linear-quadratic cell survival curves ***
Compared curves: cal33 okf6TERT1
method: ls
PEmethod: fix
Test used: F-test
F Pr(>F)
values 15.038 5.924e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Use 'print' to see detailed results
Overall comparison test for coefficients alpha and beta of LQ-models
====================================================================
method = ls
PEmethod = fix
Null hypothesis (Model 1): one set of shape parameters alpha and beta for all data
----------------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha -0.42775991 0.06443191 -6.638945 1.181206e-08
beta -0.03278904 0.01288638 -2.544472 1.362888e-02
Goodness-of-fit values
Total sum of squared residuals rssTot: 15.83755
Residual Degrees of Freedom: 58
Multiple R-squared: 0.984003
Alternative hypothesis (Model 2): two sets of shape parameters alpha and beta
-----------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha:curvescal33 -0.22201908 0.09160853 -2.423564 1.862519e-02
alpha:curvesokf6TERT1 -0.53063032 0.06477701 -8.191646 3.744222e-11
beta:curvescal33 -0.05173789 0.01832171 -2.823858 6.560102e-03
beta:curvesokf6TERT1 -0.02331461 0.01295540 -1.799605 7.731114e-02
Goodness-of-fit values
Total sum of squared residuals rssTot: 10.30378
Residual Degrees of Freedom: 56
Multiple R-squared: 0.9895589
Analysis of Variance Table and F-test
Model 2 versus Model 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 58 15.838
2 56 10.304 2 5.5338 15.038 5.924e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
*** Overall comparison for two linear-quadratic cell survival curves ***
Compared curves: cal33 okf6TERT1
method: franken
PEmethod: fix
Test used: F-test
F Pr(>F)
values 16.948 1.756e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Use 'print' to see detailed results
Overall comparison test for coefficients alpha and beta of LQ-models
====================================================================
method = franken
PEmethod = fix
Null hypothesis (Model 1): one set of shape parameters alpha and beta for all data
----------------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha -0.34268389 0.044434197 -7.712166 1.862428e-10
beta -0.03917355 0.009218242 -4.249568 7.867653e-05
Goodness-of-fit values
Total sum of squared weighted residuals rsswTot: 767.0095
Residual Degrees of Freedom: 58
Multiple R-squared: 0.990357
Alternative hypothesis (Model 2): two sets of shape parameters alpha and beta
-----------------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
alpha:curvescal33 -0.22859933 0.04836349 -4.726692 1.580129e-05
alpha:curvesokf6TERT1 -0.48879371 0.05293026 -9.234675 7.547585e-13
beta:curvescal33 -0.05214356 0.01011265 -5.156271 3.413201e-06
beta:curvesokf6TERT1 -0.02190780 0.01087920 -2.013733 4.885208e-02
Goodness-of-fit values
Total sum of squared weighted residuals rsswTot: 477.8013
Residual Degrees of Freedom: 56
Multiple R-squared: 0.9939996
Analysis of Variance Table and F-test
Model 2 versus Model 1
Res.Df RSS Df Sum of Sq F Pr(>F)
1 58 767.01
2 56 477.80 2 289.21 16.948 1.756e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.