Description Usage Arguments Value See Also Examples
View source: R/ScatterplotCellScoreComponents.R
This function will plot the components of the CellScore, namely the donor- like and the target-like scores. The function will only plot the scores for the test samples (annotated by the cellscore$column sub_cell_type1). Standards are not included.
1 | ScatterplotCellScoreComponents(cellscore, cell.change, index.plot = FALSE)
|
cellscore |
a data.frame of CellScore values as calculated by CellScore() |
cell.change |
a data.frame with 3 columns: start cell type, test cell type, target cell type |
index.plot |
a logical variable, with TRUE meaning sample index should be plotted for easy identification of spots. Default is FALSE. This is useful if you want to see where the samples are located on the plot. |
This function outputs the plot on the active graphical device and returns invisibly NULL.
CellScore
for details on CellScore.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | ## Load the expression set for the standard cell types
library(Biobase)
library(hgu133plus2CellScore) # eset.std
## Locate the external data files in the CellScore package
rdata.path <- system.file("extdata", "eset48.RData", package = "CellScore")
tsvdata.path <- system.file("extdata", "cell_change_test.tsv",
package = "CellScore")
if (file.exists(rdata.path) && file.exists(tsvdata.path)) {
## Load the expression set with normalized expressions of 48 test samples
load(rdata.path)
## Import the cell change info for the loaded test samples
cell.change <- read.delim(file= tsvdata.path, sep="\t",
header=TRUE, stringsAsFactors=FALSE)
## Combine the standards and the test data
eset <- combine(eset.std, eset48)
## Generate cosine similarity for the combined data
## NOTE: May take 1-2 minutes on the full eset object
## so we subset it for 4 cell types
pdata <- pData(eset)
sel.samples <- pdata$general_cell_type %in% c("ESC", "EC", "FIB", "KER",
"ASC", "NPC", "MSC", "iPS", "piPS")
eset.sub <- eset[, sel.samples]
cs <- CosineSimScore(eset.sub, cell.change, iqr.cutoff=0.1)
## Generate the on/off scores for the combined data
individ.OnOff <- OnOff(eset.sub, cell.change, out.put="individual")
## Generate the CellScore values for all samples
cellscore <- CellScore(eset.sub, cell.change, individ.OnOff$scores,
cs$cosine.samples)
## Make the scaterplot of CellScore components
ScatterplotCellScoreComponents(cellscore, cell.change, FALSE)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.