Description Usage Arguments Value Examples
View source: R/scatterplotDonorTargetTest.R
This function is called by CellScoreReport to make a scatterplot of test and standard samples (donor and target).
1 | scatterplotDonorTargetTest(test.data, cellscore, index.plot = FALSE)
|
test.data |
a data.frame of CellScore values as calculated by CellScore(), for a group of test samples. |
cellscore |
a data.frame of CellScore values as calculated by CellScore(). |
index.plot |
a logical variable, with TRUE meaning sample index should be plotted for easy identification of spots. Default is FALSE. |
This function outputs the plot on the active graphical device and returns invisibly NULL.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | ## Not run:
## Load the expression set for the standard cell types
library(Biobase)
library(hgu133plus2CellScore) # eset.std
## Locate the external data files in the CellScore package
rdata.path <- system.file("extdata", "eset48.RData", package = "CellScore")
tsvdata.path <- system.file("extdata", "cell_change_test.tsv",
package = "CellScore")
if (file.exists(rdata.path) && file.exists(tsvdata.path)) {
## Load the expression set with normalized expressions of 48 test samples
load(rdata.path)
## Import the cell change info for the loaded test samples
cell.change <- read.delim(file= tsvdata.path, sep="\t",
header=TRUE, stringsAsFactors=FALSE)
## Combine the standards and the test data
eset <- combine(eset.std, eset48)
## Generate the on/off scores for the combined data
individ.OnOff <- OnOff(eset, cell.change, out.put="individual")
## Generate cosine similarity for the combined data
## NOTE: May take 1-2 minutes on the full eset object
cs <- CosineSimScore(eset, cell.change, iqr.cutoff=0.05)
## Generate the CellScore values for all samples
cellscore <- CellScore(eset, cell.change, individ.OnOff$scores,
cs$cosine.samples)
## Get the CellScore fvalues rom valid transitions defined by cell.change
## table
plot.data <- extractTransitions(cellscore, cell.change)
## Define a plot group variable
plot.data$plot_group <- paste(plot.data$experiment_id,
plot.data$cxkey.subcelltype, sep="_")
## Sort the scores 1) by target 2) by donor 3) by study
plot.data.ordered <- plot.data[order(plot.data$target,
plot.data$donor_tissue,
plot.data$experiment_id), ]
## How many plot_groups are there?
table(plot.data$plot_group)
## pick one plot_group to plot
group <- unique(plot.data$plot_group)[4]
## Select scores for only one plot group
test.data <- plot.data.ordered[plot.data.ordered$plot_group %in% group, ]
## save current graphical parameters
old.par <- par(no.readonly=TRUE)
## Plot: this will plot a 2-paneled plot
par(mfrow=c(1,2))
scatterplotDonorTargetTest(test.data, cellscore, FALSE)
## Reset graphical parameters
par(old.par)
}
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.