Description Usage Arguments Value See Also Examples
View source: R/extractTransitions.R
This function extracts the values of the CellScore for all the test samples of a given set of (valid) cell transition. While it can be used as standalone, it serves as an internal function for several other CellScore functions.
1 | extractTransitions(cellscore, cell.change)
|
cellscore |
a data.frame of CellScore values as calculated by the function CellScore(). |
cell.change |
a data frame containing three columns, one for the start (donor) test and target cell type. Each row of the data. frame describes one transition from the start to a target cell type. |
This function returns a data frame with the same columns as the input data frame cellscore, extended with additional column that is used as a single identifier of each valid cell transition. Technically, the output is subselection of the input data frame.
CellScore
for details on CellScore
calcualtion.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | ## Load the expression set for the standard cell types
library(Biobase)
library(hgu133plus2CellScore) # eset.std
## Locate the external data files in the CellScore package
rdata.path <- system.file("extdata", "eset48.RData", package = "CellScore")
tsvdata.path <- system.file("extdata", "cell_change_test.tsv",
package = "CellScore")
if (file.exists(rdata.path) && file.exists(tsvdata.path)) {
## Load the expression set with normalized expressions of 48 test samples
load(rdata.path)
## Import the cell change info for the loaded test samples
cell.change <- read.delim(file= tsvdata.path, sep="\t",
header=TRUE, stringsAsFactors=FALSE)
## Combine the standards and the test data
eset <- combine(eset.std, eset48)
## Generate cosine similarity for the combined data
## NOTE: May take 1-2 minutes on the full eset object
## so we subset it for 4 cell types
pdata <- pData(eset)
sel.samples <- pdata$general_cell_type %in% c("ESC", "EC", "FIB", "KER",
"ASC", "NPC", "MSC", "iPS", "piPS")
eset.sub <- eset[, sel.samples]
cs <- CosineSimScore(eset.sub, cell.change, iqr.cutoff=0.1)
## Generate the on/off scores for the combined data
individ.OnOff <- OnOff(eset.sub, cell.change, out.put="individual")
## Generate the CellScore values for all samples
cellscore <- CellScore(eset.sub, cell.change, individ.OnOff$scores,
cs$cosine.samples)
## Extract the scores for the transitions given in cell.change
cellscore.cc <- extractTransitions(cellscore, cell.change)
## View the sub_cell_type1 in the extracted object, it should be the same
## as the test cell types named in cell.change
table(cellscore.cc$sub_cell_type1)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.