Description Usage Arguments Details Value Author(s) Examples
Test how the classification performs compared to random (eg. permuted) data.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ## S4 method for signature 'PermutationResults'
getData(x, n = NULL)
## S4 method for signature 'PermutationResults'
c(x, ..., recursive = FALSE)
pvalue(x, ...)
## S4 method for signature 'PermutationResults'
pvalue(x, ...)
conf.int(x, ...)
## S4 method for signature 'PermutationResults'
conf.int(x, conf.level = 0.99, ...)
## S4 method for signature 'PermutationResults'
initialize(.Object, ..., scores.real, scores.vec)
permute(mat, ...)
## S4 method for signature 'matrix'
permute(mat, classes, projmethod = "pcp", iter = 100,
user.permutations = NULL, seed = 3, df = NULL, verbose = TRUE, ...)
## S4 method for signature 'PermutationResults,missing'
plot(x, y, comparison = "all", ...)
## S4 method for signature 'PermutationResults'
show(object)
|
x |
matrix for the function permute, otherwise it is a PermutationResults object |
n |
data to extract from ClassifiedPoints (NULL gives all) |
... |
arguments to pass on |
recursive |
dont use (belongs to default generic of combine 'c()') |
conf.level |
confidence level for the returned confidence interval |
.Object |
internal object |
scores.real |
the real score |
scores.vec |
all permuted scores |
mat |
matrix with samples on rows, PCs in columns. Ordered PCs, with PC1 to the left. |
classes |
vector in same order as rows in matrix |
projmethod |
'pcp' or 'mlp' |
iter |
integer number of iterations to be performed. |
user.permutations |
user defined permutation matrix |
seed |
random seed to be used by the internal permutation |
df |
degrees of freedom, passed to smooth.spline |
verbose |
makes function more talkative |
y |
default plot param, which should be set to NULL |
comparison |
Specify a comparison i.e. ("grp1 vs grp2") and plot only that comparison. |
object |
ClassifiedPoints Object |
This is a test suit and will return a summarized object. The default of the parameter 'iter' is set quite low, and in principle the more iterations the better, or until the pvalue converges to a specifc value. If no pre-permuted data has been supplied by the user, then the internal permutation method will perform a sampling without replacement within each dimension.
The permute function returns an object of class PermutationResults
Jesper R. Gadin and Jason T. Serviss
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | #use pcp method
data(pcpMatrix)
classes <- rownames(pcpMatrix)
#run function
iterations <- 10
pe <- permute(
mat=pcpMatrix,
classes=classes,
iter=iterations,
projmethod="pcp"
)
#use mlp method
data(mlpMatrix)
classes <- rownames(mlpMatrix)
pe <- permute(
mat=mlpMatrix,
classes=classes,
iter=iterations,
projmethod="mlp"
)
#getData accessor
getData(pe)
#getData accessor specific
getData(pe, "scores.vec")
#get pvalue
pvalue(pe)
#plot result
plot(pe)
#combine three (parallell) jobs on the same matrix
pe2 <- c(pe, pe, pe)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.