Description Usage Arguments Details Value Slots Author(s) See Also Examples
dmDSprecision extends the dmDSdata
by adding the
precision estimates of the Dirichlet-multinomial distribution used to model
the feature (e.g., transcript, exon, exonic bin) counts for each gene in the
differential usage analysis. Result of calling the dmPrecision
function.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## S4 method for signature 'dmDSprecision'
design(object, type = "precision")
mean_expression(x, ...)
## S4 method for signature 'dmDSprecision'
mean_expression(x)
common_precision(x, ...)
## S4 method for signature 'dmDSprecision'
common_precision(x)
common_precision(x) <- value
## S4 replacement method for signature 'dmDSprecision'
common_precision(x) <- value
genewise_precision(x, ...)
## S4 method for signature 'dmDSprecision'
genewise_precision(x)
genewise_precision(x) <- value
## S4 replacement method for signature 'dmDSprecision'
genewise_precision(x) <- value
|
type |
Character indicating which design matrix should be returned.
Possible values |
x, object |
dmDSprecision object. |
... |
Other parameters that can be defined by methods using this generic. |
value |
Values that replace current attributes. |
Normally, in the differential analysis based on RNA-seq data, such as, for example, differential gene expression, dispersion (of negative-binomial model) is estimated. Here, we estimate precision of the Dirichlet-multinomial model as it is more convenient computationally. To obtain dispersion estimates, one can use a formula: dispersion = 1 / (1 + precision).
mean_expression(x)
: Get a data frame with mean gene
expression.
common_precision(x), common_precision(x) <- value
:
Get or set common precision. value
must be numeric of length 1.
genewise_precision(x), genewise_precision(x) <- value
: Get a data
frame with gene-wise precision or set new gene-wise precision. value
must be a data frame with "gene_id" and "genewise_precision" columns.
mean_expression
Numeric vector of mean gene expression.
common_precision
Numeric value of estimated common precision.
genewise_precision
Numeric vector of estimated gene-wise precisions.
design_precision
Numeric matrix of the design used to estimate precision.
Malgorzata Nowicka
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | # --------------------------------------------------------------------------
# Create dmDSdata object
# --------------------------------------------------------------------------
## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
## Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)
## Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)
## Create a pasilla_samples data frame
pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)
levels(pasilla_samples$group)
## Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
## Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
d <- d[names(d) %in% gene_id_subset, ]
# --------------------------------------------------------------------------
# Differential transcript usage analysis - simple two group comparison
# --------------------------------------------------------------------------
## Filtering
## Check what is the minimal number of replicates per condition
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d, design = design_full)
plotPrecision(d)
head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.