Description Usage Arguments Value Slots Author(s) See Also Examples
dmSQTLtest extends the dmSQTLfit
class by adding the
null model Dirichlet-multinomial likelihoods and the gene-level results of
testing for differential transcript/exon usage QTLs. Result of
dmTest
.
1 2 | ## S4 method for signature 'dmSQTLtest'
results(x)
|
x |
dmSQTLtest object. |
... |
Other parameters that can be defined by methods using this generic. |
results(x)
: Get a data frame with gene-level results.
lik_null
List of numeric vectors with the per gene-snp DM null model likelihoods.
results_gene
Data frame with the gene-level results including:
gene_id
- gene IDs, block_id
- block IDs, snp_id
- SNP
IDs, lr
- likelihood ratio statistics based on the DM model,
df
- degrees of freedom, pvalue
- p-values estimated based on
permutations and adj_pvalue
- Benjamini & Hochberg adjusted
p-values.
Malgorzata Nowicka
dmSQTLdata
,
dmSQTLprecision
, dmSQTLfit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | # --------------------------------------------------------------------------
# Create dmSQTLdata object
# --------------------------------------------------------------------------
# Use subsets of data defined in the GeuvadisTranscriptExpr package
library(GeuvadisTranscriptExpr)
geuv_counts <- GeuvadisTranscriptExpr::counts
geuv_genotypes <- GeuvadisTranscriptExpr::genotypes
geuv_gene_ranges <- GeuvadisTranscriptExpr::gene_ranges
geuv_snp_ranges <- GeuvadisTranscriptExpr::snp_ranges
colnames(geuv_counts)[c(1,2)] <- c("feature_id", "gene_id")
colnames(geuv_genotypes)[4] <- "snp_id"
geuv_samples <- data.frame(sample_id = colnames(geuv_counts)[-c(1,2)])
d <- dmSQTLdata(counts = geuv_counts, gene_ranges = geuv_gene_ranges,
genotypes = geuv_genotypes, snp_ranges = geuv_snp_ranges,
samples = geuv_samples, window = 5e3)
# --------------------------------------------------------------------------
# sQTL analysis - simple group comparison
# --------------------------------------------------------------------------
## Filtering
d <- dmFilter(d, min_samps_gene_expr = 70, min_samps_feature_expr = 5,
minor_allele_freq = 5, min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d)
plotPrecision(d)
## Fit full model proportions
d <- dmFit(d)
## Fit null model proportions, perform the LR test to detect tuQTLs
## and use the permutation approach to adjust the p-values
d <- dmTest(d)
## Plot the gene-level p-values
plotPValues(d)
## Get the gene-level results
head(results(d))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.