Description Usage Arguments Value Author(s) See Also Examples
Precision versus mean expression plot
1 2 3 4 5 6 7 | plotPrecision(x, ...)
## S4 method for signature 'dmDSprecision'
plotPrecision(x)
## S4 method for signature 'dmSQTLprecision'
plotPrecision(x)
|
x |
|
... |
Other parameters that can be defined by methods using this generic. |
Normally in the differential analysis based on RNA-seq data, such plot has dispersion parameter plotted on the y-axis. Here, the y-axis represents precision since in the Dirichlet-multinomial model this is the parameter that is directly estimated. It is important to keep in mind that the precision parameter (gamma0) is inverse proportional to dispersion (theta): theta = 1 / (1 + gamma0). In RNA-seq data, we can typically observe a trend where the dispersion decreases (here, precision increases) for genes with higher mean expression.
Malgorzata Nowicka
plotData
, plotProportions
,
plotPValues
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | # --------------------------------------------------------------------------
# Create dmDSdata object
# --------------------------------------------------------------------------
## Get kallisto transcript counts from the 'PasillaTranscriptExpr' package
library(PasillaTranscriptExpr)
data_dir <- system.file("extdata", package = "PasillaTranscriptExpr")
## Load metadata
pasilla_metadata <- read.table(file.path(data_dir, "metadata.txt"),
header = TRUE, as.is = TRUE)
## Load counts
pasilla_counts <- read.table(file.path(data_dir, "counts.txt"),
header = TRUE, as.is = TRUE)
## Create a pasilla_samples data frame
pasilla_samples <- data.frame(sample_id = pasilla_metadata$SampleName,
group = pasilla_metadata$condition)
levels(pasilla_samples$group)
## Create a dmDSdata object
d <- dmDSdata(counts = pasilla_counts, samples = pasilla_samples)
## Use a subset of genes, which is defined in the following file
gene_id_subset <- readLines(file.path(data_dir, "gene_id_subset.txt"))
d <- d[names(d) %in% gene_id_subset, ]
# --------------------------------------------------------------------------
# Differential transcript usage analysis - simple two group comparison
# --------------------------------------------------------------------------
## Filtering
## Check what is the minimal number of replicates per condition
table(samples(d)$group)
d <- dmFilter(d, min_samps_gene_expr = 7, min_samps_feature_expr = 3,
min_gene_expr = 10, min_feature_expr = 10)
plotData(d)
## Create the design matrix
design_full <- model.matrix(~ group, data = samples(d))
## To make the analysis reproducible
set.seed(123)
## Calculate precision
d <- dmPrecision(d, design = design_full)
plotPrecision(d)
head(mean_expression(d))
common_precision(d)
head(genewise_precision(d))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.