Description Usage Arguments Value See Also Examples
The RleArray class is a DelayedArray subclass for representing an in-memory Run Length Encoded array-like dataset.
All the operations available for DelayedArray objects work on RleArray objects.
1 2 |
data |
An Rle object, or an ordinary list of Rle objects,
or an RleList object, or a DataFrame
object where all the columns are Rle objects. More generally speaking,
|
dim |
The dimensions of the object to be created, that is, an integer vector of length one or more giving the maximal indices in each dimension. |
dimnames |
The dimnames of the object to be created. Must be |
chunksize |
Experimental. Don't use! |
An RleArray object.
Rle and DataFrame objects in the S4Vectors package and RleList objects in the IRanges package.
DelayedArray objects.
DelayedArray-utils for common operations on DelayedArray objects.
realize
for realizing a DelayedArray object in memory
or on disk.
HDF5Array objects in the HDF5Array package.
The RleArraySeed helper class.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | ## ---------------------------------------------------------------------
## A. BASIC EXAMPLE
## ---------------------------------------------------------------------
data <- Rle(sample(6L, 500000, replace=TRUE), 8)
a <- array(data, dim=c(50, 20, 4000)) # array() expands the Rle object
# internally with as.vector()
A <- RleArray(data, dim=c(50, 20, 4000)) # Rle object is NOT expanded
A
object.size(a)
object.size(A)
stopifnot(identical(a, as.array(A)))
as(A, "Rle") # deconstruction
toto <- function(x) (5 * x[ , , 1] ^ 3 + 1L) * log(x[, , 2])
m1 <- toto(a)
head(m1)
M1 <- toto(A) # very fast! (operations are delayed)
M1
stopifnot(identical(m1, as.array(M1)))
cs <- colSums(m1)
CS <- colSums(M1)
stopifnot(identical(cs, CS))
## Coercing a DelayedMatrix object to DataFrame produces a DataFrame
## object with Rle columns:
as(M1, "DataFrame")
## ---------------------------------------------------------------------
## B. MAKING AN RleArray OBJECT FROM A LIST-LIKE OBJECT OF Rle OBJECTS
## ---------------------------------------------------------------------
## From a DataFrame object:
DF <- DataFrame(A=Rle(sample(3L, 100, replace=TRUE)),
B=Rle(sample(3L, 100, replace=TRUE)),
C=Rle(sample(3L, 100, replace=TRUE) - 0.5),
row.names=sprintf("ID%03d", 1:100))
M2 <- RleArray(DF)
M2
A3 <- RleArray(DF, dim=c(25, 6, 2))
A3
M4 <- RleArray(DF, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))
M4
## From an ordinary list:
## If all the supplied Rle objects have the same length and if the 'dim'
## argument is not specified, then the RleArray() constructor returns an
## RleMatrix object with 1 column per Rle object. If the 'dimnames'
## argument is not specified, then the names on the list are propagated
## as the colnames of the returned object.
data <- as.list(DF)
M2b <- RleArray(data)
A3b <- RleArray(data, dim=c(25, 6, 2))
M4b <- RleArray(data, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))
data2 <- list(Rle(sample(3L, 9, replace=TRUE)) * 11L,
Rle(sample(3L, 15, replace=TRUE)))
## Not run:
RleArray(data2) # error! (cannot infer the dim)
## End(Not run)
RleArray(data2, dim=c(4, 6))
## From an RleList object:
data <- RleList(data)
M2c <- RleArray(data)
A3c <- RleArray(data, dim=c(25, 6, 2))
M4c <- RleArray(data, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))
data2 <- RleList(data2)
## Not run:
RleArray(data2) # error! (cannot infer the dim)
## End(Not run)
RleArray(data2, dim=4:2)
## Sanity checks:
data0 <- as.vector(unlist(DF, use.names=FALSE))
m2 <- matrix(data0, ncol=3, dimnames=dimnames(M2))
stopifnot(identical(m2, as.matrix(M2)))
rownames(m2) <- NULL
stopifnot(identical(m2, as.matrix(M2b)))
stopifnot(identical(m2, as.matrix(M2c)))
a3 <- array(data0, dim=c(25, 6, 2))
stopifnot(identical(a3, as.array(A3)))
stopifnot(identical(a3, as.array(A3b)))
stopifnot(identical(a3, as.array(A3c)))
m4 <- matrix(data0, ncol=12, dimnames=dimnames(M4))
stopifnot(identical(m4, as.matrix(M4)))
stopifnot(identical(m4, as.matrix(M4b)))
stopifnot(identical(m4, as.matrix(M4c)))
## ---------------------------------------------------------------------
## C. COERCING FROM RleList OR DataFrame TO RleMatrix
## ---------------------------------------------------------------------
## Coercing an RleList object to RleMatrix only works if all the list
## elements in the former have the same length.
x <- RleList(A=Rle(sample(3L, 20, replace=TRUE)),
B=Rle(sample(3L, 20, replace=TRUE)))
M <- as(x, "RleMatrix")
stopifnot(identical(x, as(M, "RleList")))
x <- DataFrame(A=x[[1]], B=x[[2]], row.names=letters[1:20])
M <- as(x, "RleMatrix")
stopifnot(identical(x, as(M, "DataFrame")))
## ---------------------------------------------------------------------
## D. CONSTRUCTING A LARGE RleArray OBJECT
## ---------------------------------------------------------------------
## The RleArray() constructor does not accept a "long" Rle object (i.e.
## an object of length > .Machine$integer.max) at the moment:
## Not run:
RleArray(Rle(5, 3e9), dim=c(3, 1e9)) # error!
## End(Not run)
## The workaround is to supply a list of Rle objects instead:
toy_Rle <- function() {
run_lens <- c(sample(4), sample(rep(c(1:19, 40) * 3, 6e4)), sample(4))
run_vals <- sample(700, length(run_lens), replace=TRUE) / 5
Rle(run_vals, run_lens)
}
rle_list <- lapply(1:80, function(j) toy_Rle()) # takes about 20 sec.
## Cumulative length of all the Rle objects is > .Machine$integer.max:
sum(lengths(rle_list)) # 3.31e+09
## Feed 'rle_list' to the RleArray() constructor:
dim <- c(14395, 320, 719)
A <- RleArray(rle_list, dim)
A
## Because all the Rle objects in 'rle_list' have the same length, we
## can call RleArray() on it without specifying the 'dim' argument. This
## returns an RleMatrix object where each column corresponds to an Rle
## object in 'rle_list':
M <- RleArray(rle_list)
M
stopifnot(identical(as(rle_list, "RleList"), as(M, "RleList")))
## ---------------------------------------------------------------------
## E. CHANGING THE TYPE OF AN RleArray OBJECT FROM "double" TO "integer"
## ---------------------------------------------------------------------
## An RleArray object is an in-memory object so it can be useful to
## reduce its memory footprint. For an object of type "double" this can
## be done by changing its type to "integer" (integers are half the size
## of doubles in memory). Of course this only makes sense if this results
## in a loss of precision that is acceptable.
## On an ordinary array (or matrix) 'a', this is simply a matter of
## doing 'storage.mode(a) <- "integer"'. However, with a DelayedArray
## object, things are a little bit different. Let's do this on a subset
## of the RleMatrix object 'M' created in the previous section.
M1 <- as(M[1:6e5, ], "RleMatrix")
rm(M)
## First of all, it's important to be aware that object.size() (from
## package utils) is NOT reliable on RleArray objects! This is because
## the data in an RleArray object is stored in an environment and
## object.size() stubbornly refuses to take the content of an environment
## into account when computing its size:
object.size(list2env(list(aa=1:10))) # 56 bytes
object.size(list2env(list(aa=1:1e6))) # always 56 bytes!
## So we'll use object_size() instead (from package pryr):
library(pryr)
object_size(list2env(list(aa=1:10))) # 264 B
object_size(list2env(list(aa=1:1e6))) # 4 MB
object_size(list2env(list(aa=as.double(1:1e6)))) # 8 MB
object_size(M1) # 16.7 MB
type(M1) <- "integer" # Delayed!
M1 # Note the class: it's no longer RleMatrix!
# (That's because the object now carries delayed
# operations.)
## Because changing the type is a delayed operation, the memory footprint
## of the object has not changed yet (remember that the original data in
## a DelayedArray object is stored in its "seed" and its seed is never
## modified **in-place**, that is, no operation on the object will ever
## modify its seed):
object_size(M1) # Still the same (well, a very tiny more, because the
# object is now carrying one more delayed operation,
# the `type<-` operation)
## To effectively reduce the memory footprint of the object, a new object
## needs to be created. This is achieved simply by **realizing** M1 as a
## (new) RleArray object. Note that this realization will use block
## processing:
DelayedArray:::set_verbose_block_processing(TRUE) # See block processing
# in action.
getAutoBlockSize() # Automatic block size (100 Mb by default).
setAutoBlockSize(20e6) # Set automatic block size to 20 Mb.
M2 <- as(M1, "RleArray")
DelayedArray:::set_verbose_block_processing(FALSE)
setAutoBlockSize() # Reset automatic block size to factory settings.
M2
object_size(M2) # 6.91 MB (Less than half the original size! This is
# because RleArray objects use some internal tricks to
# reduce memory footprint even more when the data in
# their seed is of type "integer".)
## Finally note that the 2-step approach described here (i.e.
## type(A) <- "integer" followed by realization) is generic and works
## on any kind of DelayedArray object or derivative. In particular,
## after doing 'type(A) <- "integer"', 'A' can be realized as anything
## as long as the realization backend is supported (e.g. could be
## 'as(A, "HDF5Array")' or 'as(A, "TENxMatrix")') and realization will
## always use block processing so the array data will never be fully
## loaded in memory.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.