Description Usage Arguments Details Value Examples
Performs the ELBOW fold change test on an MArrayLM object. This is a wrapper class to help integrate the ELBOW method into Bioconductor. followed tutorial from: http://bioinformatics.knowledgeblog.org/2011/06/20/analysing-microarray-data-in-bioconductor/
1 | get_elbow_limma(marraylm, columns = NULL)
|
marraylm |
is the MArrayLM object to analyze. |
columns |
is the list of sample columns to obtain the elbow fold cut-off values for. This can be specified as a vector or a single value. |
Some of the code in this method is based on how toptable accesses the MArrayLM object to read fold values. Therefore, any MArrayLM object which works with the toptable method should also work with this method.
a matrix specified as follows
columns — (1) “up_limit”, the upper ELBOW fold-change cut-off value; (2) “low_limit”, the lower ELBOW fold-change cut-off value
rows — one row per sample, specified by the parameter “columns.”
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ########
# LOAD DATA INTO LIMMA
########
library("limma")
# load a filtered expression set into R
# NOTE: see the vignette for instructions on preparing
# a filtered dataset with your own data.
data(GSE20986_eset_exprs, package="ELBOW")
data(GSE20986_design, package="ELBOW")
# fit the linear model to the filtered expression set
fit <- lmFit(GSE20986_eset_exprs, GSE20986_design)
# set up a contrast matrix to compare tissues v cell line
contrast.matrix <- makeContrasts(huvec_choroid = huvec - choroid, huvec_retina = huvec - retina, huvec_iris <- huvec - iris, levels=GSE20986_design)
# Now the contrast matrix is combined with the per-probeset linear model fit.
huvec_fits <- contrasts.fit(fit, contrast.matrix)
huvec_ebFit <- eBayes(huvec_fits)
########
# GET THE ELBOW LIMIT (this function)
########
get_elbow_limma(huvec_ebFit)
|
up_limit low_limit
huvec_choroid 1.019033 -2.110533
huvec_retina 1.638267 -1.232533
huvec_iris <- huvec - iris 1.126700 -1.648467
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.