R/gdcDEAnalysis.R

Defines functions gdcDEReport deAnalysislimma gdcDEAnalysis

Documented in gdcDEAnalysis gdcDEReport

##' @title Differential gene expression analysis
##' @description Performs differential gene expression analysis by 
##'     \pkg{limma}, \pkg{edgeR}, and \pkg{DESeq2}
##' @param counts a dataframe or numeric matrix of raw counts data generated 
##'     from \code{\link{gdcRNAMerge}}
##' @param group a vector giving the group that each sample belongs to
##' @param comparison a character string specifying the two groups 
##'     being compared. \cr
##'     Example: \code{comparison='PrimaryTumor-SolidTissueNormal'}
##' @param method one of \code{'limma'}, \code{'edgeR'}, and 
##'     \code{'DESeq2'}. Default is \code{'limma'} \cr
##'     Note: It may takes long time for \code{method='DESeq2'} 
##'     with a single core
##' @param n.cores a numeric value of cores to be used for 
##'     \code{method='DESeq2'} to accelate the analysis process. 
##'     Default is \code{NULL}
##' @param filter logical, whether to filter out low expression genes. 
##'     If \code{TRUE}, only genes 
##'     with \code{cpm > 1} in more than half of the samples will be kept. 
##'     Default is \code{TRUE}
##' @import edgeR
##' @importFrom limma makeContrasts
##' @importFrom limma voom
##' @importFrom limma lmFit
##' @importFrom limma contrasts.fit
##' @importFrom limma eBayes
##' @importFrom limma topTable
##' @importFrom DESeq2 DESeqDataSetFromMatrix
##' @importFrom DESeq2 DESeq
##' @importFrom DESeq2 results
##' @importFrom BiocParallel MulticoreParam
##' @importFrom BiocParallel register
##' @return A dataframe containing Ensembl gene ids/miRBase v21 mature 
##'     miRNA ids, gene symbols, biotypes, fold change on the log2 scale, 
##'     p value, and FDR etc. of all genes/miRNAs of analysis.
##' @note It may takes long time for \code{method='DESeq2'} with a 
##'     single core. Please use multiple cores if possible
##' @references
##'     Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package 
##'     for differential expression analysis of digital gene expression data. 
##'     Bioinformatics. 2010 Jan 1;26(1):139-40. \cr
##'     Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 
##'     limma powers differential expression analyses for RNA-sequencing and 
##'     microarray studies. Nucleic acids research. 2015 Jan 20;
##'     43(7):e47-e47. \cr
##'     Love MI, Huber W, Anders S. Moderated estimation of fold change and 
##'     dispersion for RNA-seq data with DESeq2. Genome biology. 2014 Dec 5;
##'     15(12):550.
##' @export
##' @author Ruidong Li and Han Qu
##' @examples 
##' genes <- c('ENSG00000000938','ENSG00000000971','ENSG00000001036',
##'         'ENSG00000001084','ENSG00000001167','ENSG00000001460')
##' 
##' samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01',
##'             'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-11', 
##'             'TCGA-2F-A9KT-11', 'TCGA-2F-A9KW-11')
##' 
##' metaMatrix <- data.frame(sample_type=rep(c('PrimaryTumor',
##'                     'SolidTissueNormal'),each=3),
##'                     sample=samples,
##'                     days_to_death=seq(100,600,100),
##'                     days_to_last_follow_up=rep(NA,6))
##' rnaMatrix <- matrix(c(6092,11652,5426,4383,3334,2656,
##'                     8436,2547,7943,3741,6302,13976,
##'                     1506,6467,5324,3651,1566,2780,
##'                     834,4623,10275,5639,6183,4548,
##'                     24702,43,1987,269,3322,2410,
##'                     2815,2089,3804,230,883,5415), 6,6)
##' rownames(rnaMatrix) <- genes
##' colnames(rnaMatrix) <- samples
##' DEGAll <- gdcDEAnalysis(counts     = rnaMatrix, 
##'                         group      = metaMatrix$sample_type, 
##'                         comparison = 'PrimaryTumor-SolidTissueNormal', 
##'                         method     = 'limma')
gdcDEAnalysis <- function(counts, group, comparison, method='limma', 
    n.cores=NULL, filter=TRUE) {
    dge = DGEList(counts = counts)
    keep <- rowSums(cpm(dge) > 1) >= 0.5*length(group)
    
    if (method == 'DESeq2') {
        
        message ('DE analysis using DESeq2 may take', 
            'long time with a single core\n')
        
        coldata <- data.frame(group)
        dds <- DESeqDataSetFromMatrix(countData = counts,
            colData = coldata, design = ~ group)
        
        dds$group <- factor(dds$group, levels = 
            rev(strsplit(comparison, '-', fixed=TRUE)[[1]]))
        
        if (filter==TRUE) {
            dds <- dds[keep, ]
        }
        
        if (! is.null(n.cores)) {
            register(MulticoreParam(n.cores))
            dds <- DESeq(dds, parallel=TRUE)
        } else {
            dds <- DESeq(dds)
        }
        
        res <- results(dds)
        #res <- lfcShrink(dds, coef=2, res=res)
        
        DEGAll <- data.frame(res)
        colnames(DEGAll) <- c('baseMean', 'logFC', 'lfcSE', 'stat', 
            'PValue', 'FDR')
        
    } else if (method %in% c('edgeR', 'limma')) {
        group <- factor(group)
        design <- model.matrix(~0+group)
        colnames(design) <- levels(group)
        contrast.matrix <- makeContrasts(contrasts=comparison, 
            levels=design)
        
        if (filter==TRUE) {
            dge <- dge[keep,,keep.lib.sizes = TRUE]
        }
        dge <- calcNormFactors(dge)
        
        if (method == 'edgeR') {
            dge <- estimateDisp(dge, design)
            fit <- glmFit(dge, design)
            lrt <- glmLRT(fit, contrast=contrast.matrix)
            
            DEGAll <- lrt$table
            
        } else if (method == 'limma') {
            v <- voom(dge, design=design, plot = FALSE)
            
            fit <- lmFit(v, design)
            fit2 <- contrasts.fit(fit, contrast.matrix)
            fit2 <- eBayes(fit2)
            
            DEGAll <- topTable(fit2, coef=1, n = Inf)
            colnames(DEGAll) <- c('logFC', 'AveExpr', 't', 
                'PValue', 'FDR', 'B')
        }
    }
    
    DEGAll$FDR <- p.adjust(DEGAll$PValue, method = 'fdr')
    o <- order(DEGAll$FDR)
    DEGAll <- DEGAll[o,]
    
    if (startsWith(rownames(counts)[1], 'ENSG')) {
        degList <- biotype[match(rownames(DEGAll), biotype$ensemblID),]
        degOutput <- data.frame(symbol=degList$geneSymbol, 
            group=degList$group, DEGAll)
        
        keep <- which(! is.na(degOutput$symbol))
        degOutput <- degOutput[keep,]
        return(degOutput)
    } else {
        return (DEGAll)
    }
}


###
deAnalysislimma <- function(v, design, contrast.matrix, type='RNAseq') {
    fit <- lmFit(v, design)
    fit2 <- contrasts.fit(fit, contrast.matrix)
    fit2 <- eBayes(fit2)
    
    DEGAll <- topTable(fit2, coef=1, n = Inf)
    
    o <- order(DEGAll$adj.P.Val)
    DEGAll <- DEGAll[o,]
    
    if (type=='miRNAs') {
        return (DEGAll)
    } else {
        degList <- biotype[match(rownames(DEGAll), biotype$ensemblID),]
        degOutput <- data.frame(symbol=degList$geneSymbol, 
            group=degList$group, DEGAll)
        
        keep <- which(! is.na(degOutput$symbol))
        
        degOutput <- degOutput[keep,]
        return(degOutput)
    }
}


##' @title Report differentially expressed genes/miRNAs
##' @description Report genes/miRNAs that are differentially expressed 
##'     satisfying a given threshold
##' @param deg A dataframe of DE analysis result from 
##'     \code{\link{gdcDEAnalysis}}
##' @param gene.type one of \code{'all'}, \code{'long_non_coding'}, 
##'     \code{'protein_coding'}, and \code{'miRNAs'}. Default is \code{'all'}
##' @param fc a numeric value specifying the threshold of fold change
##' @param pval a nuemric value specifying the threshold of p value
##' @return A dataframe or numeric matrix of differentially expressed 
##'     genes/miRNAs
##' @export
##' @author Ruidong Li and Han Qu
##' @examples 
##' genes <- c('ENSG00000000938','ENSG00000000971','ENSG00000001036',
##'         'ENSG00000001084','ENSG00000001167','ENSG00000001460')
##' 
##' samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01',
##'             'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-11',
##'              'TCGA-2F-A9KT-11', 'TCGA-2F-A9KW-11')
##'              
##' metaMatrix <- data.frame(sample_type=rep(c('PrimaryTumor',
##'                         'SolidTissueNormal'),each=3),
##'                         sample=samples,
##'                         days_to_death=seq(100,600,100),
##'                         days_to_last_follow_up=rep(NA,6))
##' rnaMatrix <- matrix(c(6092,11652,5426,4383,3334,2656,
##'                     8436,2547,7943,3741,6302,13976,
##'                     1506,6467,5324,3651,1566,2780,
##'                     834,4623,10275,5639,6183,4548,
##'                     24702,43,1987,269,3322,2410,
##'                     2815,2089,3804,230,883,5415), 6,6)
##' rownames(rnaMatrix) <- genes
##' colnames(rnaMatrix) <- samples
##' DEGAll <- gdcDEAnalysis(counts     = rnaMatrix, 
##'                         group      = metaMatrix$sample_type, 
##'                         comparison = 'PrimaryTumor-SolidTissueNormal', 
##'                         method     = 'limma')
##' dePC <- gdcDEReport(deg=DEGAll)
gdcDEReport <- function(deg, gene.type='all', fc=2, pval=0.01) {
    sig <- abs(deg$logFC)>log(fc,2) & deg$FDR<pval
    
    degFinal <- deg[sig,]
    
    if (gene.type=='all' | gene.type=='miRNAs') {
        return (degFinal)
    } else {
        keep <- degFinal$group == gene.type
        degFinal <- degFinal[keep,]
        return (degFinal)
    }
}

Try the GDCRNATools package in your browser

Any scripts or data that you put into this service are public.

GDCRNATools documentation built on Nov. 27, 2020, 2 a.m.