Nothing
#
#bestCis = function(ffmgr, slranges, radius=1e6, ffind=1, anno, ncores=10) {
# # get genes in play
## allg = unlist(sapply(ffmgr[[1]], colnames))
# allg = colnames(ffmgr[[1]][[ffind]])
# # get SNPs used in testing
# relevantRS = rownames(ffmgr[[1]][[ffind]])
# # restrict SNPlocs data to relevant snp
# slranges = slranges[ which(slranges$name %in% relevantRS), ]
# # obtain coordinates of genes in play
# gr = geneRanges(allg, anno, extend=radius)
# maxgap <<- 0L
# sspcs = as.character(unique(space(slranges))) # coercion added late july 2010
# if (length(sspcs)>1) warning(paste("slranges included multiple spaces; using", sspcs[1]))
# # find overlaps of gene regions and SNP
# lk = findOverlaps(gr, slranges)[[sspcs[1]]]
# querGnames = allg[ lk@matchMatrix[,1] ]
# indPerGene = split(lk@matchMatrix[,2], querGnames) # some genes will have no overlap
# # rs numbers of SNP cis to each gene
# if ("multicore" %in% search()) #(is.loaded("mc_fork", PACKAGE="multicore"))
# cisrs = mclapply(indPerGene, function(x) slranges$name[x], mc.cores=ncores)
# else
# cisrs = lapply(indPerGene, function(x) slranges$name[x] )
# # get maxchisq of all cis SNP
# names(cisrs) = names(indPerGene)
# wmax = function(x) c(snpind=which.max(x), max=max(x), rsnum=rownames(x)[which.max(x)])
# if ("multicore" %in% search()) # (is.loaded("mc_fork", PACKAGE="multicore"))
# tmp = mclapply(names(cisrs), function(x) wmax(ffmgr[[1]][[ffind]][cisrs[[x]],x,drop=FALSE]/ffmgr$shortfac))
# else tmp = lapply(names(cisrs), function(x) wmax(ffmgr[[1]][[ffind]][cisrs[[x]],x,drop=FALSE]/ffmgr$shortfac))
# tmp = t(matrix(unlist(tmp),nr=3))
# colnames(tmp) = c("snpind", paste("chisq(", ffmgr$df,")", sep=""), "rsnum")
# rownames(tmp) = names(cisrs) # mclapply does not preserve names
# ans = tmp[match(names(indPerGene), rownames(tmp) ),]
# ans = data.frame(ans, stringsAsFactors=FALSE, check.names=FALSE)
# ans[,1] = as.numeric(ans[,1])
# ans[,2] = as.numeric(ans[,2])
# ans = ans[,c(3,2)]
# #tmp = list(ans=ans[,c(3,2)], granges=gr, sloc=slranges)
# gstarts = start(gr)
# names(gstarts) = gr$name
# sloc = start(slranges)
# names(sloc) = slranges$name
# snplocs = sloc[ans[,1]]
# gstarts = gstarts[rownames(ans)]
# syms = geneSyms(rownames(ans), anno)
# pv = 1-pchisq(ans[,2], ffmgr$df)
## pv2 =pmin(1,2*( 1-pchisq(ans[,2], ffmgr$df)))
# dist = abs(gstarts-snplocs)
# data.frame(gstarts, ans, df=ffmgr$df, snplocs, pv=pv, sym=syms, absdist=dist, check.names=FALSE, stringsAsFactors=FALSE)
#}
#
##allCisP_1sided = function (ffmgr, slranges, radius = 1e+06, ffind = 1, anno, ncores = 10)
##{
## allg = colnames(ffmgr[[1]][[ffind]])
## relevantRS = rownames(ffmgr[[1]][[ffind]])
## slranges = slranges[which(slranges$name %in% relevantRS),
## ]
## gr = geneRanges(allg, anno, extend = radius)
## maxgap <<- 0L
## sspcs = unique(space(slranges))
## if (length(sspcs) > 1)
## warning(paste("slranges included multiple spaces; using",
## sspcs[1]))
## lk = findOverlaps(gr, slranges)[[as.character(sspcs[1])]]
## querGnames = allg[lk@matchMatrix[, 1]]
## indPerGene = split(lk@matchMatrix[, 2], querGnames)
## cisrs = mclapply(indPerGene, function(x) slranges$name[x],
## mc.cores = ncores)
## names(cisrs) = names(indPerGene)
## wmax = function(x) c(snpind = which.max(x), max = max(x),
## rsnum = rownames(x)[which.max(x)])
## ans = mclapply(names(cisrs), function(x) 1 - pchisq(ffmgr[[1]][[ffind]][cisrs[[x]],
## x, drop = FALSE]/ffmgr$shortfac, ffmgr$df))
## names(ans) = names(cisrs)
## ans
##}
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.