inst/oldRsrc/minp.R

#minpBAD = function(path, BUFSIZE=100000, breakat=Inf, freqdump=10000,
#  filefun=gzfile) {
#   owarn = options()$warn
#   ans = rep(NA, BUFSIZE)
#   minind = rep(NA, BUFSIZE)
#   rsid = rep(NA, BUFSIZE)
#   on.exit(close(fi))
#   nl = 0; fi = filefun(path, "r");
#   hline = NULL
#   while( !inherits(try(tmp <- readLines(fi, n=1, ok=FALSE)), "try-error") ) {
#     if (nl == 0 & is.null(hline)) {  # get header record and don't increment nl
#        hline = strsplit(tmp, " ")[[1]]
#        next
#        }
#     if (nl %% freqdump == 0 && options()$verbose) cat(nl) # monitor
#     nl = nl+1  # bump line count
#     if (nl %% BUFSIZE == 0) {       # add buffer if needed
#            ans = c(ans, rep(NA, BUFSIZE))  
#            minind = c(minind, rep(NA, BUFSIZE))  
#            rsid = c(rsid, rep(NA, BUFSIZE)) 
#            if (options()$verbose) cat("growing buffer...\n")
#            }
#     txt = strsplit(tmp, " ")[[1]]
#     rsid[nl] = as.numeric(txt[2])
#     options(warn=0)
#     chisqs = as.numeric(strsplit(tmp, " ")[[1]][-c(1,2)])
#     options(warn=owarn)
#     if (all(is.na(chisqs))) {
#         ans[nl] = NA
#         next
#         }
#     if (nl >= breakat) break
#     N = sum(!is.na(chisqs))
#     rawp = pmin(1, 2*(1-pchisq(chisqs,1)))
#     ans[nl] = min(rawp)
#     minind[nl] = which.min(rawp)
## following chunk is intended to deal with multiplicity and correlation
## through Benjamini-Yekutieli algorithm -- but passing for now
#   #  adjp.tmp = mt.rawp2adjp(rawp, "BY")
#   #  adjp = adjp.tmp$adjp[,"BY"][order(adjp.tmp$index)]
#   #  if (all(adjp >=1 )) {
#   #    ans[nl] =NA
#   #    next
#   #    }
#   #  fish = sum(-2*log(adjp),na.omit=TRUE) # Chisq w 2N DF
#   #  print(fish)
#   #  print(N)
#   #  fishp = 1-pchisq(fish, 2*N)
#   #  ans[nl] = abs(qnorm(fishp))
#    }
#    list(rsid=rsid[1:nl], ans=ans[1:nl], minind=minind[1:nl], genes=hline[-1])
#}
#
#
#
#locreport = function (winfo, chr) 
#{
#    if (!is.numeric(chr)) 
#        stop("chr must be in 1:24")
#    locs = snpLocs.Hs(chrnum(chr), rsid(paste("rs", winfo[["rsid"]], 
#        sep = "")))
#    ldf = data.frame(reflocs = locs[2, ], rsid = paste("rs", 
#        locs[1, ], sep = ""))
#    gns = gsub("\"", "", winfo[["genes"]])
#    picks = gns[winfo[["minind"]]]
#    ac = as.character
#    indf = data.frame(rsid = ac(paste("rs", winfo[["rsid"]], 
#        sep = "")), mlogp = -log10(winfo[["ans"]]), mind = winfo[["minind"]], 
#        bestgene = ac(picks), stringsAsFactors = FALSE)
#    fulldf = merge(ldf, indf, by = "rsid", all.x = TRUE)
#    fulldf$rsid = ac(fulldf$rsid)
#    fulldf
#}
#
#wgtinfo2browser = function(winfo, chr, start, end, trname="newtrack",
#  bsession=NULL, vlim=c(0,16),  ...) {
#  require(rtracklayer, quietly=TRUE)
#  lrep = locreport(winfo, chr)
#  lrepc = na.omit(lrep)
#  lrepco = lrepc[ order(lrepc$reflocs), ]
#  space = paste("chr", chr, sep="")
#  tsco = lrepco$mlogp
#  tsco[!is.finite(tsco)] = max(tsco[is.finite(tsco)]) # winsorize at top
#  rr = RangedData(IRanges(start=lrepco[,2], end=lrepco[,2]),
#      score = tsco, space=space)
#  if (is.null(bsession)) ee = browserSession("UCSC")
#  else ee = bsession
#  track(ee, trname, viewLimits=vlim) = rr
#  browserView(ee, GenomicRanges(start=start, end=end, chrom=space),
#    track=c("ruler", "cytoBand"), full=trname, ...)
#}
# 
#top4 = function (x, sms) 
#{
## assumes you have split a locreport output by gene
#    par(mfrow = c(2, 2))
#    for (i in 1:4) plot_EvG(probeId(names(x)), rsid(x[[1]][i, 
#        "rsid"]), sms, main = paste("-log10p=", round(x[[1]][i, "mlogp"], 
#        3)))
#}
#
#maxchisq = function(mgr, nchr=length(mgr$fflist), type=c("perSNP", "perGene")[1], ncores=2) {
# theCall = match.call()
# if (type == "perSNP") {appmargin = 1; fnextract = colnames }
# else if (type == "perGene") {appmargin = 2; fnextract = rownames }
# else stop("check value of type parameter for this call")
# mgrcall = mgr$call
# if ("multicore" %in% search()) { # (is.loaded("mc_fork", PACKAGE="multicore")) {
#   maxchisq = mclapply( mgr$fflist[1:nchr],  function(x) apply(x[], appmargin, max)/mgr$shortfac, mc.cores=ncores)
#   bestFeats = mclapply( mgr$fflist[1:nchr],  function(x) fnextract(x)[apply(x[], appmargin, which.max)], mc.cores=ncores) 
#   } else {
#   maxchisq = lapply( mgr$fflist[1:nchr],  function(x) apply(x[], appmargin, max)/mgr$shortfac)
#   bestFeats = lapply( mgr$fflist[1:nchr],  function(x) fnextract(x)[apply(x[], appmargin, which.max)])
#   }
# new("maxchisq", list(maxchisq=maxchisq, df=mgr$df, bestFeats=bestFeats, theCall=theCall, mgrcall=mgrcall))
#}
#
#
#
#

Try the GGtools package in your browser

Any scripts or data that you put into this service are public.

GGtools documentation built on Nov. 8, 2020, 6:32 p.m.