Description Usage Arguments Details References See Also Examples
Plot appropriate priors using parameters from vector
1 | plotPriors(parameter.vec)
|
parameter.vec |
MCMC parameter vector of the type generated by e.g. mcmc.defaultParams_Linear |
This function takes the parameter vector that will be used for network inference function and plots the priors associated with the parameters given.
Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2010. On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 2010; doi: 10.1093/bioinformatics/btq421
Morrissey, E.R., Juarez, M.A., Denby, K.J. and Burroughs, N.J. 2011 Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression Biostatistics 2011; doi: 10.1093/biostatistics/kxr009
mcmc.defaultParams_gauss
, mcmc.defaultParams_Linear
,
mcmc.defaultParams_nonLinear
, mcmc.defaultParams_student
.
1 2 3 4 5 6 7 8 9 10 11 12 | # Get default parameters
nonLinearNet.params <- mcmc.defaultParams_nonLinear()
# Change run length
nonLinearNet.params[1] <- 150000
# Change prior on smoothness parameter
nonLinearNet.params[6] <- 30000 # Change truncation
nonLinearNet.params[12] <- 3 # Concentrate more mass close to linear region
# Plot to check changes
plotPriors(nonLinearNet.params)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.