Description Usage Arguments Details Value Author(s) See Also Examples
A genomic variable is a variable defined along a genome. Here are 2 ways a genomic variable is generally represented in Bioconductor:
as a named RleList object with one list element per chromosome;
as a metadata column on a disjoint GRanges object.
This man page documents tools for switching from one form to the other.
1 2 3 | bindAsGRanges(...)
mcolAsRleList(x, varname)
binnedAverage(bins, numvar, varname, na.rm=FALSE)
|
... |
One or more genomic variables in the form of named RleList objects. |
x |
A disjoint GRanges object with metadata columns on it.
A GRanges object is said to be disjoint if it contains
ranges that do not overlap with each other. This can be tested with
|
varname |
The name of the genomic variable. For For |
bins |
A GRanges object representing the genomic bins. Typically
obtained by calling |
numvar |
A named RleList object representing a numerical variable
defined along the genome covered by |
na.rm |
A logical value indicating whether |
bindAsGRanges
allows to switch the representation of one or
more genomic variables from the named RleList form to the
metadata column on a disjoint GRanges object form by binding
the supplied named RleList objects together and putting them
on the same GRanges object. This transformation is lossless.
mcolAsRleList
performs the opposite transformation and is also
lossless (however the circularity flags and genome information in
seqinfo(x)
won't propagate). It works for any metadata column on
x
that can be put in Rle form i.e. that is an
atomic vector or a factor.
binnedAverage
computes the binned average of a numerical variable
defined along a genome.
For bindAsGRanges
: a GRanges object with 1 metadata column
per supplied genomic variable.
For mcolAsRleList
: a named RleList object with
1 list element per seqlevel in x
.
For binnedAverage
: input GRanges object bins
with
an additional metadata column named varname
containing the binned
average.
H. Pag<c3><a8>s
RleList objects in the IRanges package.
coverage,GenomicRanges-method for computing the coverage of a GRanges object.
The tileGenome
function for putting tiles on a
genome.
GRanges objects and isDisjoint,GenomicRanges-method
for the isDisjoint
method for GenomicRanges objects.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | ## ---------------------------------------------------------------------
## A. TWO WAYS TO REPRESENT A GENOMIC VARIABLE
## -----------------------------------------------------------------
## 1) As a named RleList object
## ----------------------------
## Let's create a genomic variable in the "named RleList" form:
library(BSgenome.Scerevisiae.UCSC.sacCer2)
set.seed(55)
my_var <- RleList(
lapply(seqlengths(Scerevisiae),
function(seqlen) {
tmp <- sample(50L, seqlen, replace=TRUE)
Rle(cumsum(tmp - rev(tmp)))
}
),
compress=FALSE)
my_var
## 2) As a metadata column on a disjoint GRanges object
## ----------------------------------------------------
gr1 <- bindAsGRanges(my_var=my_var)
gr1
gr2 <- GRanges(c("chrI:1-150",
"chrI:211-285",
"chrI:291-377",
"chrV:51-60"),
score=c(0.4, 8, -10, 2.2),
id=letters[1:4],
seqinfo=seqinfo(Scerevisiae))
gr2
## Going back to the "named RleList" form:
mcolAsRleList(gr1, "my_var")
score <- mcolAsRleList(gr2, "score")
score
id <- mcolAsRleList(gr2, "id")
id
bindAsGRanges(score=score, id=id)
## Bind 'my_var', 'score', and 'id' together:
gr3 <- bindAsGRanges(my_var=my_var, score=score, id=id)
## Sanity checks:
stopifnot(identical(my_var, mcolAsRleList(gr3, "my_var")))
stopifnot(identical(score, mcolAsRleList(gr3, "score")))
stopifnot(identical(id, mcolAsRleList(gr3, "id")))
gr2b <- bindAsGRanges(score=score, id=id)
seqinfo(gr2b) <- seqinfo(gr2)
stopifnot(identical(gr2, gr2b))
## ---------------------------------------------------------------------
## B. BIND TOGETHER THE COVERAGES OF SEVERAL BAM FILES
## ---------------------------------------------------------------------
library(pasillaBamSubset)
library(GenomicAlignments)
untreated1_cvg <- coverage(BamFile(untreated1_chr4()))
untreated3_cvg <- coverage(BamFile(untreated3_chr4()))
all_cvg <- bindAsGRanges(untreated1=untreated1_cvg,
untreated3=untreated3_cvg)
## Keep regions with coverage:
all_cvg[with(mcols(all_cvg), untreated1 + untreated3 >= 1)]
## Plot the coverage profiles with the Gviz package:
library(Gviz)
plotNumvars <- function(numvars, region, name="numvars", ...)
{
stopifnot(is(numvars, "GRanges"))
stopifnot(is(region, "GRanges"), length(region) == 1L)
gtrack <- GenomeAxisTrack()
dtrack <- DataTrack(numvars,
chromosome=as.character(seqnames(region)),
name=name,
groups=colnames(mcols(numvars)), type="l", ...)
plotTracks(list(gtrack, dtrack), from=start(region), to=end(region))
}
plotNumvars(all_cvg, GRanges("chr4:1-25000"),
"coverage", col=c("red", "blue"))
plotNumvars(all_cvg, GRanges("chr4:1.03e6-1.08e6"),
"coverage", col=c("red", "blue"))
## Sanity checks:
stopifnot(identical(untreated1_cvg, mcolAsRleList(all_cvg, "untreated1")))
stopifnot(identical(untreated3_cvg, mcolAsRleList(all_cvg, "untreated3")))
## ---------------------------------------------------------------------
## C. COMPUTE THE BINNED AVERAGE OF A NUMERICAL VARIABLE DEFINED ALONG A
## GENOME
## ---------------------------------------------------------------------
## In some applications (e.g. visualization), there is the need to compute
## the average of a genomic variable for a set of predefined fixed-width
## regions (sometimes called "bins").
## Let's use tileGenome() to create such a set of bins:
bins1 <- tileGenome(seqinfo(Scerevisiae), tilewidth=100,
cut.last.tile.in.chrom=TRUE)
## Compute the binned average for 'my_var' and 'score':
bins1 <- binnedAverage(bins1, my_var, "binned_var")
bins1
bins1 <- binnedAverage(bins1, score, "binned_score")
bins1
## Binned average in "named RleList" form:
binned_var1 <- mcolAsRleList(bins1, "binned_var")
binned_var1
stopifnot(all.equal(mean(my_var), mean(binned_var1))) # sanity check
mcolAsRleList(bins1, "binned_score")
## With bigger bins:
bins2 <- tileGenome(seqinfo(Scerevisiae), tilewidth=50000,
cut.last.tile.in.chrom=TRUE)
bins2 <- binnedAverage(bins2, my_var, "binned_var")
bins2 <- binnedAverage(bins2, score, "binned_score")
bins2
binned_var2 <- mcolAsRleList(bins2, "binned_var")
binned_var2
stopifnot(all.equal(mean(my_var), mean(binned_var2))) # sanity check
mcolAsRleList(bins2, "binned_score")
## Not surprisingly, the "binned" variables are much more compact in
## memory than the original variables (they contain much less runs):
object.size(my_var)
object.size(binned_var1)
object.size(binned_var2)
## ---------------------------------------------------------------------
## D. SANITY CHECKS
## ---------------------------------------------------------------------
bins3 <- tileGenome(c(chr1=10, chr2=8), tilewidth=5,
cut.last.tile.in.chrom=TRUE)
my_var3 <- RleList(chr1=Rle(c(1:3, NA, 5:7)), chr2=Rle(c(-3, NA, -3, NaN)))
bins3 <- binnedAverage(bins3, my_var3, "binned_var3", na.rm=TRUE)
binned_var3 <- mcols(bins3)$binned_var3
stopifnot(
identical(mean(my_var3$chr1[1:5], na.rm=TRUE),
binned_var3[1]),
identical(mean(c(my_var3$chr1, 0, 0, 0)[6:10], na.rm=TRUE),
binned_var3[2]),
#identical(mean(c(my_var3$chr2, 0), na.rm=TRUE),
# binned_var3[3]),
identical(0, binned_var3[4])
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.