Description Usage Arguments Value Author(s) See Also Examples
Estimates experimental and biological variances by LPE and resampling
1 2 3 4 | hem.eb.prior(dat, n.layer, design,
method.var.e="neb", method.var.b="peb", method.var.t="neb",
rep=TRUE, baseline.var="LPE", p.remove=0, max.chip=4,
q=0.01, B=25, n.digits=10, print.message.on.screen=TRUE)
|
dat |
data |
n.layer |
number of layers |
design |
design matrix |
method.var.e |
prior specification method for experimental variance; "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification |
method.var.b |
prior specification method for biological variance; "peb"=parametric EB prior specification |
method.var.t |
prior specification method for total variance; "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification |
rep |
no replication if FALSE |
baseline.var |
baseline variance estimation method: LPE for replicated data and BLPE, PSE, or ASE for unreplicated data |
p.remove |
percent of removed rank-variance genes for BLPE |
max.chip |
maximum number of chips to estimate errors |
q |
quantile for paritioning genes based on expression levels |
B |
number of iterations for resampling |
n.digits |
number of digits |
print.message.on.screen |
if TRUE, process status is shown on screen. |
var.b |
prior estimate matrix for biological variances (n.layer=2) |
var.e |
prior estimate matrix for experiemtnal variances (n.layer=2) |
var.t |
prior estimate matrix for total variances (n.layer=1) |
HyungJun Cho and Jae K. Lee
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | #Example 1: Two-layer HEM with EB prior specification
data(pbrain)
##construct a design matrix
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2)
ind <- c(1,1,2,2,3,3,1,1,2,2,3,3)
rep <- c(1,2,1,2,1,2,1,2,1,2,1,2)
design <- data.frame(cond,ind,rep)
##normalization
pbrain.nor <- hem.preproc(pbrain[,2:13])
##take a subset for a testing purpose;
##use all genes for a practical purpose
pbrain.nor <- pbrain.nor[1:1000,]
##estimate hyperparameters of variances by LPE
#pbrain.eb <- hem.eb.prior(pbrain.nor, n.layer=2, design=design,
# method.var.e="neb", method.var.b="peb")
#fit HEM with two layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose
#pbrain.hem <- hem(pbrain.nor, n.layer=2, design=design,burn.ins=10, n.samples=30,
# method.var.e="neb", method.var.b="peb",
# var.e=pbrain.eb$var.e, var.b=pbrain.eb$var.b)
#Example 2: One-layer HEM with EB prior specification
data(mubcp)
##construct a design matrix
cond <- c(rep(1,6),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
ind <- c(1:6,rep((1:5),4))
design <- data.frame(cond,ind)
##normalization
mubcp.nor <- hem.preproc(mubcp)
##take a subset for a testing purpose;
##use all genes for a practical purpose
mubcp.nor <- mubcp.nor[1:1000,]
##estimate hyperparameters of variances by LPE
#mubcp.eb <- hem.eb.prior(mubcp.nor, n.layer=1, design=design,
# method.var.t="neb")
#fit HEM with two layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose
#mubcp.hem <- hem(mubcp.nor, n.layer=1, design=design, burn.ins=10, n.samples=30,
# method.var.t="neb", var.t=mubcp.eb$var.t)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.