Description Usage Arguments Value Author(s) See Also Examples
Estimates experimental and biological variances by LPE and resampling
1 2 3 4  | hem.eb.prior(dat,  n.layer, design, 
             method.var.e="neb", method.var.b="peb", method.var.t="neb", 
             rep=TRUE, baseline.var="LPE", p.remove=0, max.chip=4,
             q=0.01, B=25, n.digits=10, print.message.on.screen=TRUE)
 | 
dat | 
 data  | 
n.layer | 
 number of layers  | 
design | 
 design matrix  | 
method.var.e | 
 prior specification method for experimental variance; "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification  | 
method.var.b | 
 prior specification method for biological variance; "peb"=parametric EB prior specification  | 
method.var.t | 
 prior specification method for total variance; "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification  | 
rep | 
 no replication if FALSE  | 
baseline.var | 
 baseline variance estimation method: LPE for replicated data and BLPE, PSE, or ASE for unreplicated data  | 
p.remove | 
 percent of removed rank-variance genes for BLPE  | 
max.chip | 
 maximum number of chips to estimate errors  | 
q | 
 quantile for paritioning genes based on expression levels  | 
B | 
 number of iterations for resampling  | 
n.digits | 
 number of digits  | 
print.message.on.screen | 
 if TRUE, process status is shown on screen.  | 
var.b | 
 prior estimate matrix for biological variances (n.layer=2)  | 
var.e | 
 prior estimate matrix for experiemtnal variances (n.layer=2)  | 
var.t | 
 prior estimate matrix for total variances (n.layer=1)  | 
HyungJun Cho and Jae K. Lee
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54  | #Example 1: Two-layer HEM with EB prior specification
data(pbrain)
##construct a design matrix
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2)
ind  <- c(1,1,2,2,3,3,1,1,2,2,3,3)
rep  <- c(1,2,1,2,1,2,1,2,1,2,1,2)
design <- data.frame(cond,ind,rep)
##normalization
pbrain.nor <- hem.preproc(pbrain[,2:13])
##take a subset for a testing purpose;
##use all genes for a practical purpose
pbrain.nor <- pbrain.nor[1:1000,]
##estimate hyperparameters of variances by LPE
#pbrain.eb  <- hem.eb.prior(pbrain.nor, n.layer=2,  design=design,
#                           method.var.e="neb", method.var.b="peb")     
#fit HEM with two layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose 
#pbrain.hem <- hem(pbrain.nor, n.layer=2,  design=design,burn.ins=10, n.samples=30, 
#              method.var.e="neb", method.var.b="peb", 
#              var.e=pbrain.eb$var.e, var.b=pbrain.eb$var.b)
#Example 2: One-layer HEM with EB prior specification
data(mubcp)
##construct a design matrix
cond <- c(rep(1,6),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
ind  <- c(1:6,rep((1:5),4))
design <- data.frame(cond,ind)
##normalization
mubcp.nor <- hem.preproc(mubcp)
##take a subset for a testing purpose;
##use all genes for a practical purpose
mubcp.nor <- mubcp.nor[1:1000,] 
##estimate hyperparameters of variances by LPE
#mubcp.eb  <- hem.eb.prior(mubcp.nor, n.layer=1, design=design,
#             method.var.t="neb")                                
#fit HEM with two layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose 
#mubcp.hem <- hem(mubcp.nor, n.layer=1, design=design,  burn.ins=10, n.samples=30, 
#             method.var.t="neb", var.t=mubcp.eb$var.t)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.