Description Usage Arguments Value Author(s) References See Also Examples
Fits an error model with heterogeneous experimental and biological variances.
1 2 3 4 5 | hem(dat, probe.ID=NULL, n.layer, design, burn.ins=1000, n.samples=3000,
method.var.e="gam", method.var.b="gam", method.var.t="gam",
var.e=NULL, var.b=NULL, var.t=NULL, var.g=1, var.c=1, var.r=1,
alpha.e=3, beta.e=.1, alpha.b=3, beta.b=.1, alpha.t=3, beta.t=.2,
n.digits=10, print.message.on.screen=TRUE)
|
dat |
data |
probe.ID |
a vector of probe set IDs |
n.layer |
number of layers; 1=one-layer EM, 2=two-layer EM |
design |
design matrix |
burn.ins |
number of burn-ins for MCMC |
n.samples |
number of samples for MCMC |
method.var.e |
prior specification method for experimental variance; "gam"=Gamma(alpha,beta), "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification |
method.var.b |
prior specification method for biological variance; "gam"=Gamma(alpha,beta), "peb"=parametric EB prior specification |
method.var.t |
prior specification method for total variance; "gam"=Gamma(alpha,beta), "peb"=parametric EB prior specification, "neb"=nonparametric EB prior specification |
var.e |
prior estimate matrix for experimental variance |
var.b |
prior estimate matrix for biological variance |
var.t |
prior estimate matrix for total variance |
var.g |
N(0, var.g); prior parameter for gene effect |
var.c |
N(0, var.c); prior parameter for condition effect |
var.r |
N(0, var.r); prior parameter for interaction effect of gene and condition |
alpha.e, beta.e |
Gamma(alpha.e,alpha.e); prior parameters for inverse of experimental variance |
alpha.b, beta.b |
Gamma(alpha.b,alpha.b); prior parameters for inverse of biological variance |
alpha.t, beta.t |
Gamma(alpha.b,alpha.b); prior parameters for inverse of total variance |
n.digits |
number of digits |
print.message.on.screen |
if TRUE, process status is shown on screen. |
n.gene |
numer of genes |
n.chip |
number of chips |
n.cond |
number of conditions |
design |
design matrix |
burn.ins |
number of burn-ins for MCMC |
n.samples |
number of samples for MCMC |
priors |
prior parameters |
m.mu |
estimated mean expression intensity for each gene under each condition |
m.x |
estimated unobserved expression intensity for each combination of genes, conditions, and individuals (n.layer=2) |
m.var.b |
estimated biological variances (n.layer=2) |
m.var.e |
estimated experiemental variances (n.layer=2) |
m.var.t |
estimated total variances (n.layer=1) |
H |
H-scores |
HyungJun Cho and Jae K. Lee
Cho, H. and Lee, J.K. (2004) Bayesian Hierarchical Error Model for Analysis of Gene Expression Data, Bioinformatics, 20: 2016-2025.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #Example 1: Two-layer HEM
data(pbrain)
##construct a design matrix
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2) #condition
ind <- c(1,1,2,2,3,3,1,1,2,2,3,3) #biological replicate
rep <- c(1,2,1,2,1,2,1,2,1,2,1,2) #experimental replicate
design <- data.frame(cond,ind,rep)
##normalization
pbrain.nor <- hem.preproc(pbrain[,2:13])
##fit HEM with two layers of error
##using the small numbers of burn-ins and MCMC samples for a testing purpose;
##but increase the numbers for a practical purpose
#pbrain.hem <- hem(pbrain.nor, n.layer=2, design=design,
# burn.ins=10, n.samples=30)
##print H-scores
#pbrain.hem$H
#Example 2: One-layer HEM
data(mubcp)
##construct a design matrix
cond <- c(rep(1,6),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
ind <- c(1:6,rep((1:5),4))
design <- data.frame(cond,ind)
##construct a design matrix
mubcp.nor <- hem.preproc(mubcp)
#fit HEM with one layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose
#mubcp.hem <- hem(mubcp.nor, n.layer=1,design=design, burn.ins=10, n.samples=30)
##print H-scores
#mubcp.hem$H
###NOTE: Use 'hem.fdr' for FDR evaluation
###NOTE: Use 'hem.eb.prior' for Empirical Bayes (EB) prior sepecification
###NOTE: Use EB-HEM ('hem' after 'hem.eb.prior') for small data sets
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.