Description Usage Arguments Value Author(s) See Also Examples
Computes resampling-based False Discovery Rate (FDR)
1 2 3 |
dat |
data |
n.layer |
number of layers: 1=one-layer EM; 2=two-layer EM |
design |
design matrix |
rep |
no replication if FALSE |
hem.out |
output from hem function |
eb.out |
output from hem.eb.prior function |
n.iter |
number of iterations |
q.trim |
quantile used for estimtaing the proportion of true negatives (pi0) |
target.fdr |
Target FDRs |
n.digits |
number of digits |
print.message.on.screen |
if TRUE, process status is shown on screen. |
fdr |
H-values and corresponding FDRs |
pi0 |
estimated proportion of true negatives |
H.null |
H-scores from null data |
targets |
given target FDRs, corrsponding critical values and numbers of significant genes are provided |
HyungJun Cho and Jae K. Lee
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | data(pbrain)
##construct a design matrix
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2)
ind <- c(1,1,2,2,3,3,1,1,2,2,3,3)
rep <- c(1,2,1,2,1,2,1,2,1,2,1,2)
design <- data.frame(cond,ind,rep)
##normalization
pbrain.nor <- hem.preproc(pbrain[,2:13])
##take a subset for a testing purpose;
##use all genes for a practical purpose
pbrain.nor <- pbrain.nor[1:1000,]
##estimate hyperparameters of variances by LPE
#pbrain.eb <- hem.eb.prior(pbrain.nor, n.layer=2, design=design,
# method.var.e="neb", method.var.b="peb")
##fit HEM with two layers of error
##using the small numbers of burn-ins and MCMC samples for a testing purpose;
##but increase the numbers for a practical purpose
#pbrain.hem <- hem(pbrain.nor, n.layer=2, design=design,burn.ins=10, n.samples=30,
# method.var.e="neb", method.var.b="peb",
# var.e=pbrain.eb$var.e, var.b=pbrain.eb$var.b)
##Estimate FDR based on resampling
#pbrain.fdr <- hem.fdr(pbrain.nor, n.layer=2, design=design,
# hem.out=pbrain.hem, eb.out=pbrain.eb)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.