Description Usage Arguments Value Examples
For a given set of values for the parameters to be estimated, this method returns an array containing the actual (not log-transformed) values of all model parameters, not just those to be estimated, in the same order as specified in the model. This is helpful when simulating the model at a given position in parameter space.
1 | cur_params(output, options, position = NULL)
|
options |
list with entries as explained below. Options set – defines the problem and sets some parameters to control the MCMC algorithm. model: List of model parameters - to estimate. The parameter objects must each have a 'value' attribute containing the parameter's numerical value. estimate_params: list. List of parameters to estimate, all of which must also be listed in 'options$model$parameters'. initial_values: list of float, optional. Starting values for parameters to estimate. If omitted, will use the nominal values from 'options$model$parameters' step_fn: callable f(output), optional. User callback, called on every MCMC iteration. likelihood_fn: callable f(output, position). User likelihood function. prior_fn: callable f(output, position), optional. User prior function. If omitted, a flat prior will be used. nsteps: int. Number of MCMC iterations to perform. use_hessian: logical, optional. Wheter to use the Hessian to guide the walk. Defaults to FALSE. rtol: float or list of float, optional. Relative tolerance for ode solver. atol: float or list of float, optional. Absolute tolerance for ode solver. norm_step_size: float, optional. MCMC step size. Defaults to a reasonable value. hessian_period: int, optional. Number of MCMC steps between Hessian recalculations. Defaults to a reasonable but fairly large value, as Hessian calculation is expensive. hessian_scale: float, optional. Scaling factor used in generating Hessian-guided steps. Defaults to a reasonable value. sigma_adj_interval: int, optional. How often to adjust 'output$sig_value' while annealing to meet 'accept_rate_target'. Defaults to a reasonable value. anneal_length: int, optional. Length of initial "burn-in" annealing period. Defaults to 10 'nsteps', or if 'use_hessian' is TRUE, to 'hessian_period' (i.e. anneal until first hessian is calculated) T_init: float, optional. Initial temperature for annealing. Defaults to a resonable value. accept_rate_target: float, optional. Desired acceptance rate during annealing. Defaults to a reasonable value. See also 'sigma_adj_interval' above. sigma_max: float, optional. Maximum value for 'output$sig_value'. Defaults to a resonable value. sigma_min: float, optional. Minimum value for 'output$sig_value'. Defaults to a resonable value. sigma_step: float, optional. Increment for 'output$sig_value' adjustments. Defaults to a resonable value. To eliminate adaptive step size, set sigma_step to 1. thermo_temp: float in the range [0,1], optional. Temperature for thermodynamic integration support. Used to scale likelihood when calculating the posterior value. Defaults to 1, i.e. no effect. |
output |
List of output values with entries as explained below. num_estimate: int. Number of parameters to estimate. estimate_idx: list of int. Indices of parameters to estimate in the model's full parameter list. initial_values: list of float. Starting values for parameters to estimate, taken from the parameters' nominal values in the model or explicitly specified in 'options'. initial_position: list of float. Starting position of the MCMC walk in parameter space (log10 of 'initial_values'). position: list of float. Current position of MCMC walk in parameter space, i.e. the most recently accepted move. test_position: list of float. Proposed MCMC mmove. acceptance: int. Number of accepted moves. T: float. Current value of the simulated annealing temperature. T_decay: float. Constant for exponential decay of 'T', automatically calculated such that T will decay from 'options$T_init' down to 1 over the first 'options$anneal_length' setps. sig_value: float. Current value of sigma, the scaling factor for the proposal distribution. The MCMC algorithm dynamically tunes this to maintain the aaceptance rate specified in 'options$accept_rate_target'. iter: int. Current MCMC step number. start_iter: int. Starting MCMC step number. ode_options: list. Options for the ODE integrator, currently just 'rtol' for relative tolerance and 'atol' for absolute tolerance. initial_prior: float. Starting prior value, i.e. the value at 'initial_position'. initial_likelihood: float. Starting likelihood value, i.e. the value at 'initial_position'. initial_posterior: float. Starting posterior value, i.e. the value at 'initial_position'. accept_prior: float. Current prior value i.e. the value at 'position'. accept_likelihood: float. Current likelihood value i.e. the value at 'position'. accept_posterior: float. Current posterior value i.e. the value at 'position'. test_prior: float. Prior value at 'test_position'. test_likelihood: float. Likelihood value at 'test_position'. test_posterior: float. Posterior value at 'test_position'. hessian: array of float. Current hessian of the posterior landscape. Size is 'num_estimate' x 'num_estimate'. positions: array of float. Trace of all proposed moves. Size is 'num_estimate' x 'nsteps'. priors: array of float. Trace of all priors corresponding to 'positions'. Length is 'nsteps'. likelihoods: array of float. Trace of all likelihoods corresponding to 'positions'. Length is 'nsteps'. posteriors: array of float. Trace of all posteriors corresponding to 'positions'. Length is 'nsteps'. alphas: array of float. Trace of 'alpha' parameter and calculated values. Length is 'nsteps'. sigmas: array of float. Trace of 'sigma' parameter and calculated values. Length is 'nsteps'. delta_posteriors: array of float. Trace of 'delta_posterior' parameter and calculated values. Length is 'nsteps'. ts: array of float. Trace of 'T' parameter and calculated values. Length is 'nsteps'. accepts: logical array. Trace of wheter each proposed move was accepted or not. Length is 'nsteps'. rejects: logical array. Trace of wheter each proposed move was rejected or not. Length is 'nsteps'. hessians: array of float. Trace of all hessians. Size is 'num_estimate' x 'num_estimate' x 'num_hessians' where 'num_hessians' is the actual number of hessians to be calculated. |
position |
list of float, optional. log10 of the values of the parameters being estimated. If omitted, 'output$position' (the most recent accepted output move) will be used. The model's nominal values will be used for all parameters *not* being estimated, regardless. |
A list of the values of all model parameters.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | data("simpleExample", package="MEIGOR")
initial_pars = createLBodeContPars(model, LB_n=1, LB_k=0.1, LB_tau=0.01, UB_n=5, UB_k=0.9, UB_tau=10, random=TRUE)
simData = plotLBodeFitness(cnolist, model, initial_pars, reltol=1e-05, atol=1e-03, maxStepSize=0.01)
f_bayesFit <- function(position, params=initial_pars, exp_var=opts$exp_var) {
# convert from log
params$parValues = 10^position
ysim = getLBodeDataSim(cnolist=cnolist, model=model,
ode_parameters=params)
data_as_vec = unlist(cnolist$valueSignals)
sim_as_vec = unlist(ysim)
# set nan (NAs) to 0
sim_as_vec[is.na(sim_as_vec)] = 0
sim_as_vec[is.nan(sim_as_vec)]= 0
return(sum((data_as_vec-sim_as_vec)^2/(2*exp_var^2)))
}
prior_mean = log10(initial_pars$parValues)
prior_var = 10
opts <- list("model"=NULL, "estimate_params"=NULL,"initial_values"=NULL,
"tspan"=NULL, "step_fn"=NULL, "likelihood_fn"=NULL,
"prior_fn"=NULL, "nsteps"=NULL, "use_hessian"=FALSE,
"rtol"=NULL, "atol"=NULL, "norm_step_size"=0.75,
"hessian_period"=25000, "hessian_scale"=0.085,
"sigma_adj_interval"=NULL, "anneal_length"=NULL,
"T_init"=10, "accept_rate_target"=0.3, "sigma_max"=1,
"sigma_min"=0.25, "sigma_step"=0.125, "thermo_temp"=1, "seed"=NULL)
opts$nsteps = 2000
opts$likelihood_fn = f_bayesFit
opts$use_hessian = TRUE
opts$hessian_period = opts$nsteps/10
opts$model = list(parameters=list(name=initial_pars$parNames,
value=initial_pars$parValues))
opts$estimate_params = initial_pars$parValues
opts$exp_var = 0.01
res = runBayesFit(opts)
initial_pars$parValues = cur_params(output=res, options=opts)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.