Description Usage Arguments Value See Also Examples
View source: R/mut_matrix_stranded.R
Make a mutation count matrix with 192 features: 96 trinucleotides and 2 strands, these can be transcription or replication strand
1 2 3 4 5 6 7 | mut_matrix_stranded(
vcf_list,
ref_genome,
ranges,
mode = "transcription",
extension = 1
)
|
vcf_list |
GRangesList or GRanges object. |
ref_genome |
BSGenome reference genome object |
ranges |
GRanges object with the genomic ranges of: 1. (transcription mode) the gene bodies with strand (+/-) information, or 2. (replication mode) the replication strand with 'strand_info' metadata |
mode |
"transcription" or "replication", default = "transcription" |
extension |
The number of bases, that's extracted upstream and downstream of the base substitutions. (Default: 1). |
192 mutation count matrix (96 X 2 strands)
read_vcfs_as_granges
,
mut_matrix
,
mut_strand
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ## See the 'read_vcfs_as_granges()' example for how we obtained the
## following data:
grl <- readRDS(system.file("states/read_vcfs_as_granges_output.rds",
package = "MutationalPatterns"
))
## Load the corresponding reference genome.
ref_genome <- "BSgenome.Hsapiens.UCSC.hg19"
library(ref_genome, character.only = TRUE)
## Transcription strand analysis:
## You can obtain the known genes from the UCSC hg19 dataset using
## Bioconductor:
# BiocManager::install("TxDb.Hsapiens.UCSC.hg19.knownGene")
library("TxDb.Hsapiens.UCSC.hg19.knownGene")
genes_hg19 <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
mut_mat_s <- mut_matrix_stranded(grl, ref_genome, genes_hg19,
mode = "transcription"
)
## You can also use a longer context
mut_mat_s <- mut_matrix_stranded(grl, ref_genome, genes_hg19,
mode = "transcription", extension = 2
)
## Replication strand analysis:
## Read example bed file with replication direction annotation
repli_file <- system.file("extdata/ReplicationDirectionRegions.bed",
package = "MutationalPatterns"
)
repli_strand <- read.table(repli_file, header = TRUE)
repli_strand_granges <- GRanges(
seqnames = repli_strand$Chr,
ranges = IRanges(
start = repli_strand$Start + 1,
end = repli_strand$Stop
),
strand_info = repli_strand$Class
)
## UCSC seqlevelsstyle
seqlevelsStyle(repli_strand_granges) <- "UCSC"
# The levels determine the order in which the features
# will be countend and plotted in the downstream analyses
# You can specify your preferred order of the levels:
repli_strand_granges$strand_info <- factor(
repli_strand_granges$strand_info,
levels = c("left", "right")
)
mut_mat_s_rep <- mut_matrix_stranded(grl, ref_genome, repli_strand_granges,
mode = "replication"
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.