Description Usage Arguments Value See Also Examples
View source: R/plot_contribution_heatmap.R
Plot relative contribution of signatures in a heatmap
1 2 3 4 5 6 7 8 9 |
contribution |
Signature contribution matrix |
sig_order |
Character vector with the desired order of the signature names for plotting. Optional. |
sample_order |
Character vector with the desired order of the sample names for plotting. Optional. |
cluster_samples |
Hierarchically cluster samples based on eucledian distance. Default = T. |
cluster_sigs |
Hierarchically cluster sigs based on eucledian distance. Default = T. |
method |
The agglomeration method to be used for hierarchical clustering. This should be one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). Default = "complete". |
plot_values |
Plot relative contribution values in heatmap. Default = F. |
Heatmap with relative contribution of each signature for each sample
extract_signatures
,
mut_matrix
,
plot_contribution
,
plot_cosine_heatmap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ## Extracting signatures can be computationally intensive, so
## we use pre-computed data generated with the following command:
# nmf_res <- extract_signatures(mut_mat, rank = 2)
nmf_res <- readRDS(system.file("states/nmf_res_data.rds",
package = "MutationalPatterns"
))
## Set signature names as row names in the contribution matrix
rownames(nmf_res$contribution) <- c("Signature A", "Signature B")
## Plot with clustering.
plot_contribution_heatmap(nmf_res$contribution, cluster_samples = TRUE, cluster_sigs = TRUE)
## Define signature and sample order for plotting. If you have a mutation or signature
## matrix, then this can be done like in the example of 'plot_cosine_heatmap()'
sig_order <- c("Signature B", "Signature A")
sample_order <- c(
"colon1", "colon2", "colon3", "intestine1", "intestine2",
"intestine3", "liver3", "liver2", "liver1"
)
plot_contribution_heatmap(nmf_res$contribution,
cluster_samples = FALSE,
sig_order = sig_order, sample_order = sample_order
)
## It's also possible to create a contribution heatmap with text values
output_text <- plot_contribution_heatmap(nmf_res$contribution, plot_values = TRUE)
## This function can also be used on the result of a signature refitting analysis.
## Here we load a existing result as an example.
snv_refit <- readRDS(system.file("states/strict_snv_refit.rds",
package = "MutationalPatterns"
))
plot_contribution_heatmap(snv_refit$contribution, cluster_samples = TRUE, cluster_sigs = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.