Nothing
###---- Internal functions ----####
.zeroIsNA <- function(x) {
sel <- assay(x) == 0
assay(x)[sel] <- NA
x
}
.infIsNA <- function(x) {
sel <- is.infinite(assay(x))
assay(x)[sel] <- NA
x
}
## Internal function that compute the number and percent of missing
## data from a SummarizedExperiment object
.nNAByAssay <- function(object) {
x <- assay(object)
nNA <- sum(is.na(x))
pNA <- nNA / length(x) * 100
DataFrame(nNA = unname(nNA),
pNA = unname(pNA))
}
## Internal function that compute the number and percent of missing
## data for a given margin (features = 1 and sample = 2) from a
## SummarizedExperiment object
.nNAByMargin <- function(object, MARGIN = 1) {
x <- assay(object)
nNA <- apply(is.na(x), MARGIN, sum)
n <- ifelse(MARGIN == 1, ncol(x), nrow(x))
pNA <- nNA / n * 100
DataFrame(name = names(pNA),
nNA = unname(nNA),
pNA = unname(pNA))
}
## Internal function that compute the number and percent of missing
## data for a SummarizedExperiment object
.nNA <- function(x) {
nNA <- .nNAByAssay(x)
nNA_rows <- .nNAByMargin(x, 1)
nNA_cols <- .nNAByMargin(x, 2)
list(nNA = nNA, nNArows = nNA_rows, nNAcols = nNA_cols)
}
## Internal function that compute the number and percent of missing
## data for a QFeatures object
.nNAi <- function(object, i) {
if (is.numeric(i)) i <- names(object)[i]
## Get number of missing data per assay
nNAassay <- do.call(rbind, lapply(i, function(ii)
cbind(assay = ii, .nNAByAssay(object[[ii]])) ))
## Get number of missing data per row
nNArow <- do.call(rbind, lapply(i, function(ii)
cbind(assay = ii, .nNAByMargin(object[[ii]], 1)) ))
## Get number of missing data per column
nNAcol <- do.call(rbind, lapply(i, function(ii)
cbind(assay = ii, .nNAByMargin(object[[ii]], 2)) ))
## Return as list
list(nNA = nNAassay, nNArows = nNArow, nNAcols = nNAcol)
}
.row_for_filterNA <- function(x, pNA = 0L) {
if (!is.matrix(x))
stop(sQuote("x"), " must be a matrix.")
if (!is.numeric(pNA))
stop(sQuote("pNA"), " must be numeric.")
if (length(pNA) > 1)
stop(sQuote("pNA"), " must be of length one.")
if (pNA > 1) pNA <- 1
if (pNA < 0) pNA <- 0
k <- rowSums(is.na(x)) / ncol(x)
k <= pNA
}
###---- Documentation ----####
##' @title Managing missing data
##'
##' @description
##'
##' This manual page describes the handling of missing values in
##' [QFeatures] objects. In the following functions, if `object` is of
##' class `QFeatures`, and optional assay index or name `i` can be
##' specified to define the assay (by name of index) on which to
##' operate.
##'
##' The following functions are currently available:
##'
##' - `zeroIsNA(object, i)` replaces all 0 in `object` by `NA`. This
##' is often necessary when third-party software assume that
##' features that weren't quantified should be assigned an
##' intensity of 0.
##'
##' - `infIsNA(object, i)` replaces all infinite values in `object` by
##' `NA`. This is necessary when third-party software divide
##' expression data by zero values, for instance during custom
##' normalization.
##'
##' - `nNA(object, i)` return a list of missing value summaries. The
##' first element `nNA` gives a `DataFrame` with the number and the
##' percentage of missing values for the whole assay; the second
##' element `nNArows` provides a `DataFrame` of the number and the
##' percentage of missing values for the features (rows) of the
##' assay(s); the third element `nNAcols` provides the number and
##' the percentage of missing values in each sample of the assay(s).
##' When `object` has class `QFeatures` and additional column with
##' the assays is provided in each element's `DataFrame`.
##'
##' - `filterNA(object, pNA, i)` removes features (rows) that contain
##' `pNA` percentage or more missing values.
##'
##' See the *Processing* vignette for examples.
##'
##' @param object An object of class `QFeatures` or `SummarizedExperiment`.
##'
##' @param pNA `numeric(1)` providing the maximim percentage of
##' missing values per feature (row) that is acceptable. Feature
##' with higher percentages are removed. If 0 (default), features
##' that contain any number of `NA` values are dropped.
##'
##' @param i One or more indices or names of the assay(s) to be processed.
##'
##' @return An instance of the same class as `object`.
##'
##' @aliases zeroIsNA zeroIsNA,SummarizedExperiment,missing-method zeroIsNA,QFeatures,missing-method zeroIsNA,QFeatures,numeric-method zeroIsNA,QFeatures,integer-method zeroIsNA,QFeatures,character-method
##'
##' @aliases infIsNA infIsNA,SummarizedExperiment,missing-method infIsNA,QFeatures,missing-method infIsNA,QFeatures,numeric-method infIsNA,QFeatures,integer-method infIsNA,QFeatures,character-method
##'
##' @aliases nNA nNA,SummarizedExperiment,missing-method nNA,QFeatures,missing-method nNA,QFeatures,numeric-method nNA,QFeatures,integer-method nNA,QFeatures,character-method
##'
##' @aliases filterNA filterNA,SummarizedExperiment-method filterNA,QFeatures-method
##'
##' @name missing-data
##'
##' @rdname QFeatures-missing-data
##'
##' @seealso The `impute()` for `QFeautres` instances.
##'
##' @examples
##' se_na2
##'
##' ## Summary if missing values
##' nNA(ft_na, 1)
##'
##' ## Remove rows with missing values
##' assay(filterNA(ft_na, i = 1))
##'
##' ## Replace NAs by zero and back
##' ft_na <- impute(ft_na, i = 1, method = "zero")
##' assay(ft_na)
##' ft_na <- zeroIsNA(ft_na, 1)
##' assay(ft_na)
NULL
####---- zeroIsNA ----####
##' @exportMethod zeroIsNA
##' @rdname QFeatures-missing-data
setMethod("zeroIsNA", c("SummarizedExperiment", "missing"),
function(object, i) .zeroIsNA(object))
##' @rdname QFeatures-missing-data
setMethod("zeroIsNA", c("QFeatures", "integer"),
function(object, i) {
for (ii in i)
object[[ii]] <- zeroIsNA(object[[ii]])
object
})
##' @rdname QFeatures-missing-data
setMethod("zeroIsNA", c("QFeatures", "numeric"),
function(object, i) zeroIsNA(object, as.integer(i)))
##' @rdname QFeatures-missing-data
setMethod("zeroIsNA", c("QFeatures", "character"),
function(object, i) {
for (ii in i)
object[[ii]] <- zeroIsNA(object[[ii]])
object
})
####---- infIsNA ----####
##' @exportMethod infIsNA
##' @rdname QFeatures-missing-data
setMethod("infIsNA", c("SummarizedExperiment", "missing"),
function(object, i) .infIsNA(object))
##' @rdname QFeatures-missing-data
setMethod("infIsNA", c("QFeatures", "integer"),
function(object, i) {
for (ii in i)
object[[ii]] <- infIsNA(object[[ii]])
object
})
##' @rdname QFeatures-missing-data
setMethod("infIsNA", c("QFeatures", "numeric"),
function(object, i) infIsNA(object, as.integer(i)))
##' @rdname QFeatures-missing-data
setMethod("infIsNA", c("QFeatures", "character"),
function(object, i) {
for (ii in i)
object[[ii]] <- infIsNA(object[[ii]])
object
})
####---- nNA ----####
##' @exportMethod nNA
##' @rdname QFeatures-missing-data
setMethod("nNA", c("SummarizedExperiment", "missing"),
function(object, i) .nNA(object))
##' @rdname QFeatures-missing-data
setMethod("nNA", c("QFeatures", "integer"),
function(object, i) .nNAi(object, i))
##' @rdname QFeatures-missing-data
setMethod("nNA", c("QFeatures", "numeric"),
function(object, i) .nNAi(object, as.integer(i)))
##' @rdname QFeatures-missing-data
setMethod("nNA", c("QFeatures", "character"),
function(object, i) .nNAi(object, i) )
####---- filterNA ----####
##' @exportMethod filterNA
##' @rdname QFeatures-missing-data
setMethod("filterNA", "SummarizedExperiment",
function(object, pNA = 0) {
k <- .row_for_filterNA(assay(object), pNA)
object[k, ]
})
##' @rdname QFeatures-missing-data
setMethod("filterNA", "QFeatures",
function(object, pNA = 0, i) {
if (missing(i))
stop("'i' not provided. You must specify which assay(s) to process.")
for (ii in i)
object[[ii]] <- filterNA(object[[ii]], pNA)
object
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.