Description Usage Arguments Value Author(s) See Also Examples
A common task is to find all the SRA entities of one type associated with another SRA entity (eg., find all SRA samples associated with SRA study 'SRP001990'). This function provides a very fast mapping between entity types to facilitate queries of this type.
1 | sraConvert(in_acc, out_type = c("sra", "submission", "study", "sample", "experiment", "run"), sra_con)
|
in_acc |
Character vector of SRA accessions and should be of same SRA data type, either one of SRA submission, SRA study, SRA sample, SRA experiment and SRA run' |
out_type |
Character vector of the following SRA data types: 'sra', 'submission','study','sample','experiment','run'; if 'sra' is in out_type, out_type will be c("submission", "study", "sample", "experiment", "run") |
sra_con |
Connection to the SRAmetadb SQLite database |
A data.frame containing all matched SRA accessions.
Jack Zhu <zhujack@mail.nih.gov>
getSRA
, listSRAfile
, getSRAinfo
1 2 3 4 5 6 7 8 9 10 11 | ## Using the SRAmetadb demo database
library(SRAdb)
sra_dbname <- file.path(system.file('extdata', package='SRAdb'), 'SRAmetadb_demo.sqlite')
sra_con <- dbConnect(dbDriver("SQLite"), sra_dbname)
## Convert SRA experiment accessions to other types
a <- sraConvert( in_acc=c(" SRR000137", "SRR000138 "), out_type=c('sample'), sra_con=sra_con )
b <- sraConvert (in_acc=c("SRX000122"), sra_con=sra_con)
## The actual SRAmetadb sqlite database can be downloaded using function: getSRAdbFile. Warning: the actual SRAmetadb sqlite database is pretty large (> 35GB as of May, 2018) after uncompression. So, downloading and uncompressing of the actual SRAmetadb sqlite could take quite a few minutes depending on your network bandwidth. Direct links for downloading the SRAmetadb sqlite database: https://s3.amazonaws.com/starbuck1/sradb/SRAmetadb.sqlite.gz https://gbnci-abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.