Nothing
#' @title Plotting Spectra
#'
#' @description
#'
#' [Spectra()] can be plotted with one of the following functions
#'
#' - `plotSpectra`: plots each spectrum in its separate plot by splitting
#' the plot area into as many panels as there are spectra.
#'
#' - `plotSpectraOverlay`: plots all spectra in `x` **into the same** plot (as
#' an overlay).
#'
#' - `plotSpectraMirror`: plots a pair of spectra as a *mirror plot*.
#' Parameters `x` and `y` both have to be a `Spectra` of length 1. Matching
#' peaks (considering `ppm` and `tolerance`) are highlighted. See [common()]
#' for details on peak matching. Parameters `matchCol`, `matchLty`,
#' `matchLwd` and `matchPch` allow to customize how matching peaks are
#' indicated.
#'
#' @param x a [Spectra()] object. For `plotSpectraMirror` it has to be an
#' object of length 2.
#'
#' @param xlab `character(1)` with the label for the x-axis (by default
#' `xlab = "m/z"`).
#'
#' @param ylab `character(1)` with the label for the y-axis (by default
#' `ylab = "intensity"`).
#'
#' @param type `character(1)` specifying the type of plot. See [plot.default()]
#' for details. Defaults to `type = "h"` which draws each peak as a line.
#'
#' @param xlim `numeric(2)` defining the x-axis limits. The range of m/z values
#' are used by default.
#'
#' @param ylim `numeric(2)` defining the y-axis limits. The range of intensity
#' values are used by default.
#'
#' @param main `character(1)` with the title for the plot. By default the
#' spectrum's MS level and retention time (in seconds) is used.
#'
#' @param col color to be used to draw the peaks. Should be either of length 1,
#' or equal to the number of spectra (to plot each spectrum in a different
#' color) or be a `list` with colors for each individual peak in each
#' spectrum.
#'
#' @param labels allows to specify a label for each peak. Can be a `character`
#' with length equal to the number of peaks, or, ideally, a `function` that
#' uses one of the `Spectra`'s variables (see examples below).
#' `plotSpectraMirror` supports only `labels` of type *function*.
#'
#' @param labelCex `numeric(1)` giving the amount by which the text should be
#' magnified relative to the default. See parameter `cex` in [par()].
#'
#' @param labelSrt `numeric(1)` defining the rotation of the label. See
#' parameter `srt` in [text()].
#'
#' @param labelCol color for the label(s).
#'
#' @param labelAdj see parameter `adj` in [text()].
#'
#' @param labelPos see parameter `pos` in [text()].
#'
#' @param labelOffset see parameter `offset` in [text()].
#'
#' @param axes `logical(1)` whether (x and y) axes should be drawn.
#'
#' @param frame.plot `logical(1)` whether a box should be drawn around the
#' plotting area.
#'
#' @param ppm for `plotSpectraMirror`: m/z relative acceptable difference (in
#' ppm) for peaks to be considered matching (see [common()] for more
#' details).
#'
#' @param tolerance for `plotSpectraMirror`: absolute acceptable difference of
#' m/z values for peaks to be considered matching (see [common()] for more
#' details).
#'
#' @param matchCol for `plotSpectraMirror`: color for matching peaks.
#'
#' @param matchLwd for `plotSpectraMirror`: line width (`lwd`) to draw matching
#' peaks. See [par()] for more details.
#'
#' @param matchLty for `plotSpectraMirror`: line type (`lty`) to draw matching
#' peaks. See [par()] for more details.
#'
#' @param matchPch for `plotSpectraMirror`: point character (`pch`) to label
#' matching peaks. Defaults to `matchPch = 16`, set to `matchPch = NA` to
#' disable. See [par()] for more details.
#'
#' @param y for `plotSpectraMirror`: `Spectra` object of length 1 against which
#' `x` should be plotted against.
#'
#' @param asp for `plotSpectra`: the target ratio (columns / rows) when plotting
#' mutliple spectra (e.g. for 20 spectra use `asp = 4/5` for 4 columns and 5 rows
#' or `asp = 5/4` for 5 columns and 4 rows; see [grDevices::n2mfrow()] for
#' details).
#'
#' @param ... additional parameters to be passed to the [plot.default()]
#' function.
#'
#' @return These functions create a plot.
#'
#' @author Johannes Rainer, Sebastian Gibb, Laurent Gatto
#'
#' @name spectra-plotting
#'
#' @examples
#'
#' ints <- list(c(4.3412, 12, 8, 34, 23.4),
#' c(8, 25, 16, 32))
#' mzs <- list(c(13.453421, 43.433122, 46.6653553, 129.111212, 322.24432),
#' c(13.452, 43.5122, 129.112, 322.245))
#'
#' df <- DataFrame(msLevel = c(1L, 1L), rtime = c(123.12, 124))
#' df$mz <- mzs
#' df$intensity <- ints
#' sp <- Spectra(df)
#'
#' #### --------------------------------------------- ####
#' ## plotSpectra ##
#'
#' ## Plot one spectrum.
#' plotSpectra(sp[1])
#'
#' ## Plot both spectra.
#' plotSpectra(sp)
#'
#' ## Define a color for each peak in each spectrum.
#' plotSpectra(sp, col = list(c(1, 2, 3, 4, 5), 1:4))
#'
#' ## Color peaks from each spectrum in different colors.
#' plotSpectra(sp, col = c("green", "blue"))
#'
#' ## Label each peak with its m/z.
#' plotSpectra(sp, labels = function(z) format(unlist(mz(z)), digits = 4))
#'
#' ## Rotate the labels.
#' plotSpectra(sp, labels = function(z) format(unlist(mz(z)), digits = 4),
#' labelPos = 2, labelOffset = 0.1, labelSrt = -30)
#'
#' ## Add a custom annotation for each peak.
#' sp$label <- list(c("", "A", "B", "C", "D"),
#' c("Frodo", "Bilbo", "Peregrin", "Samwise"))
#' ## Plot each peak in a different color
#' plotSpectra(sp, labels = function(z) unlist(z$label),
#' col = list(1:5, 1:4))
#'
#' ## Plot a single spectrum specifying the label.
#' plotSpectra(sp[2], labels = c("A", "B", "C", "D"))
#'
#'
#' #### --------------------------------------------- ####
#' ## plotSpectraOverlay ##
#'
#' ## Plot both spectra overlaying.
#' plotSpectraOverlay(sp)
#'
#' ## Use a different color for each spectrum.
#' plotSpectraOverlay(sp, col = c("#ff000080", "#0000ff80"))
#'
#' ## Label also the peaks with their m/z if their intensity is above 15.
#' plotSpectraOverlay(sp, col = c("#ff000080", "#0000ff80"),
#' labels = function(z) {
#' lbls <- format(mz(z)[[1L]], digits = 4)
#' lbls[intensity(z)[[1L]] <= 15] <- ""
#' lbls
#' })
#' abline(h = 15, lty = 2)
#'
#' ## Use different asp values
#' plotSpectra(sp, asp = 1/2)
#' plotSpectra(sp, asp = 2/1)
#'
#' #### --------------------------------------------- ####
#' ## plotSpectraMirror ##
#'
#' ## Plot two spectra against each other.
#' plotSpectraMirror(sp[1], sp[2])
#'
#' ## Label the peaks with their m/z
#' plotSpectraMirror(sp[1], sp[2],
#' labels = function(z) format(mz(z)[[1L]], digits = 3),
#' labelSrt = -30, labelPos = 2, labelOffset = 0.2)
#' grid()
#'
#' ## The same plot with a tolerance of 0.1 and using a different color to
#' ## highlight matching peaks
#' plotSpectraMirror(sp[1], sp[2],
#' labels = function(z) format(mz(z)[[1L]], digits = 3),
#' labelSrt = -30, labelPos = 2, labelOffset = 0.2, tolerance = 0.1,
#' matchCol = "#ff000080", matchLwd = 2)
#' grid()
NULL
#' @rdname spectra-plotting
#'
#' @importFrom graphics par
#' @importFrom grDevices n2mfrow
#'
#' @export plotSpectra
plotSpectra <- function(x, xlab = "m/z", ylab = "intensity", type = "h",
xlim = numeric(), ylim = numeric(),
main = character(), col = "#00000080",
labels = character(), labelCex = 1, labelSrt = 0,
labelAdj = NULL, labelPos = NULL, labelOffset = 0.5,
labelCol = "#00000080", asp = 1, ...) {
if (!length(main))
main <- paste0("MS", msLevel(x), " RT", round(rtime(x), 1))
nsp <- length(x)
if (nsp == 1)
col <- list(col)
if (length(col) != nsp)
col <- rep(col[1], nsp)
if (length(main) != nsp)
main <- rep(main[1], nsp)
if (nsp > 1)
par(mfrow = n2mfrow(nsp, asp = asp))
for (i in seq_len(nsp))
.plot_single_spectrum(x[i], xlab = xlab, ylab = ylab, type = type,
xlim = xlim, ylim = ylim, main = main[i],
col = col[[i]], labels = labels,
labelCex = labelCex, labelSrt = labelSrt,
labelAdj = labelAdj, labelPos = labelPos,
labelOffset = labelOffset, labelCol = labelCol,
...)
}
#' @rdname spectra-plotting
#'
#' @export plotSpectraOverlay
plotSpectraOverlay <- function(x, xlab = "m/z", ylab = "intensity",
type = "h", xlim = numeric(),
ylim = numeric(),
main = paste(length(x), "spectra"),
col = "#00000080", labels = character(),
labelCex = 1, labelSrt = 0,
labelAdj = NULL, labelPos = NULL,
labelOffset = 0.5, labelCol = "#00000080",
axes = TRUE, frame.plot = axes, ...) {
nsp <- length(x)
if (nsp == 1)
col <- list(col)
if (length(col) != nsp)
col <- rep(col[1], nsp)
if (!length(xlim))
xlim <- range(unlist(mz(x)), na.rm = TRUE)
if (!length(ylim))
ylim <- c(0, max(unlist(intensity(x)), na.rm = TRUE))
dev.hold()
on.exit(dev.flush())
plot.new()
plot.window(xlim = xlim, ylim = ylim)
if (axes) {
axis(side = 1, ...)
axis(side = 2, ...)
}
if (frame.plot)
box(...)
title(main = main, xlab = xlab, ylab = ylab, ...)
for (i in seq_len(nsp))
.plot_single_spectrum(x[i], add = TRUE, type = type, col = col[[i]],
labels = labels, labelCex = labelCex,
labelSrt = labelSrt, labelAdj = labelAdj,
labelPos = labelPos, labelOffset = labelOffset,
labelCol = labelCol, ...)
}
#' @rdname spectra-plotting
#'
#' @importFrom MsCoreUtils common
#'
#' @importFrom graphics abline
#'
#' @export plotSpectraMirror
plotSpectraMirror <- function(x, y, xlab = "m/z", ylab = "intensity",
type = "h", xlim = numeric(),
ylim = numeric(), main = character(),
col = "#00000080", labels = character(),
labelCex = 1, labelSrt = 0,
labelAdj = NULL, labelPos = NULL,
labelOffset = 0.5, labelCol = "#00000080",
axes = TRUE, frame.plot = axes, ppm = 20,
tolerance = 0, matchCol = "#80B1D3", matchLwd = 1,
matchLty = 1, matchPch = 16, ...) {
if (length(x) != 1 || length(y) != 1)
stop("'x' and 'y' have to be of length 1")
if (length(labels) & !is.function(labels))
stop("'plotSpectraMirror' supports only a function with ",
"parameter 'labels'")
if (length(col) != 2)
col <- rep(col[1], 2)
if (!length(xlim))
xlim <- range(unlist(mz(x)), unlist(mz(y)), na.rm = TRUE)
if (!length(ylim))
ylim <- c(-1, 1) * max(unlist(intensity(x)), unlist(intensity(y)),
na.rm = TRUE)
dev.hold()
on.exit(dev.flush())
plot.new()
plot.window(xlim = xlim, ylim = ylim)
if (length(labels)) {
l <- c(labels(x), labels(y))
wdths <- max(strwidth(l, cex = labelCex)) / 2
ylim[1L] <- ylim[1L] - wdths * diff(ylim) / diff(xlim)
ylim[2L] <- - ylim[1L]
xlim[1L] <- xlim[1L] - wdths
xlim[2L] <- xlim[2L] + wdths
plot.window(xlim = xlim, ylim = ylim, ...)
}
if (axes) {
axis(side = 1, ...)
axis(side = 2, ...)
}
if (frame.plot)
box(...)
title(main = main, xlab = xlab, ylab = ylab, ...)
## Find common peaks
x_data <- peaksData(x)[[1L]]
y_data <- peaksData(y)[[1L]]
.plot_single_spectrum(x, add = TRUE, type = type, col = col[[1L]],
labels = labels, labelCex = labelCex,
labelSrt = labelSrt, labelAdj = labelAdj,
labelPos = labelPos, labelOffset = labelOffset,
labelCol = labelCol, ...)
idx <- which(common(x_data[, "mz"], y_data[, "mz"],
tolerance = tolerance, ppm = ppm))
if (length(idx)) {
plot.xy(xy.coords(x_data[idx, "mz"], x_data[idx, "intensity"]),
type = "h", col = matchCol, lwd = matchLwd, ...)
plot.xy(xy.coords(x_data[idx, "mz"], x_data[idx, "intensity"]),
type = "p", col = matchCol, pch = matchPch, ...)
}
if (length(labelPos) && labelPos == 1)
labelPos <- 3
if (length(labelPos) && labelPos == 3)
labelPos <- 1
labelSrt <- -1 * labelSrt
.plot_single_spectrum(y, add = TRUE, type = type, col = col[[1L]],
labels = labels, labelCex = labelCex,
labelSrt = labelSrt, labelAdj = labelAdj,
labelPos = labelPos, labelOffset = labelOffset,
orientation = -1, labelCol = labelCol, ...)
idx <- which(common(y_data[, "mz"], x_data[, "mz"],
tolerance = tolerance, ppm = ppm))
if (length(idx)) {
plot.xy(xy.coords(y_data[idx, "mz"], -y_data[idx, "intensity"]),
type = "h", col = matchCol, lwd = matchLwd, ...)
plot.xy(xy.coords(y_data[idx, "mz"], -y_data[idx, "intensity"]),
type = "p", col = matchCol, pch = matchPch, ...)
}
abline(h = 0)
}
#' @description
#'
#' Plot a single spectrum (m/z on x against intensity on y) with the optional
#' possibility to label the individual peaks.
#'
#' @author Johannes Rainer, Sebastian Gibb
#'
#' @importFrom graphics axis box plot.new plot.window plot.xy strwidth
#'
#' @importFrom graphics text title
#'
#' @importFrom grDevices dev.flush dev.hold xy.coords
#'
#' @examples
#'
#' ints <- c(4.3412, 12, 8, 34, 23.4)
#' mzs <- c(13.453421, 43.433122, 46.6653553, 129.111212, 322.24432)
#'
#' df <- DataFrame(msLevel = 1L, rtime = 123.12)
#' df$mz <- list(mzs)
#' df$intensity <- list(ints)
#' sp <- Spectra(df)
#'
#' .plot_single_spectrum(sp, main = "hello")
#' .plot_single_spectrum(sp, bty = "n")
#' .plot_single_spectrum(sp, frame.plot = FALSE)
#'
#' .plot_single_spectrum(sp, col = 1:5)
#'
#' .plot_single_spectrum(sp, labels = 1:5, col = 1:5)
#'
#' .plot_single_spectrum(sp, labels = format(mz(sp)[[1]], digits = 5),
#' labelPos = 2, labelOffset = 0.1, labelSrt = -30)
#' grid()
#' .plot_single_spectrum(sp, col = "red", type = "p", add = TRUE)
#'
#' .plot_single_spectrum(sp,
#' labels = function(z) format(mz(z)[[1]], digits = 5),
#' labelPos = 2, labelOffset = 0.1, labelSrt = -30)
#' grid()
#'
#' @noRd
.plot_single_spectrum <- function(x, xlab = "m/z", ylab = "intensity",
type = "h", xlim = numeric(),
ylim = numeric(),
main = paste("RT", round(rtime(x), 1)),
col = "#00000080", labels = character(),
labelCol = col, labelCex = 1, labelSrt = 0,
labelAdj = NULL, labelPos = NULL,
labelOffset = 0.5, add = FALSE,
axes = TRUE, frame.plot = axes,
orientation = 1, ...) {
v <- peaksData(x)[[1L]]
mzs <- v[, "mz"]
ints <- orientation * v[, "intensity"]
if (!length(xlim))
xlim <- range(mzs, na.rm = TRUE)
if (!length(ylim))
ylim <- range(orientation * c(0, max(abs(ints), na.rm = TRUE)))
if (!add) {
dev.hold()
on.exit(dev.flush())
plot.new()
plot.window(xlim = xlim, ylim = ylim)
}
if (length(labels)) {
if (is.function(labels))
labels <- labels(x)
wdths <- max(strwidth(labels, cex = labelCex)) / 2
ylim[2L] <- ylim[2L] + wdths * diff(ylim) / diff(xlim)
xlim[1L] <- xlim[1L] - wdths
xlim[2L] <- xlim[2L] + wdths
if (!add)
plot.window(xlim = xlim, ylim = ylim, ...)
}
if (!add) {
if (axes) {
axis(side = 1, ...)
axis(side = 2, ...)
}
if (frame.plot)
box(...)
title(main = main, xlab = xlab, ylab = ylab, ...)
}
plot.xy(xy.coords(mzs, ints), type = type, col = col, ...)
if (length(labels))
text(mzs, ints, labels = labels, adj = labelAdj, pos = labelPos,
col = labelCol, cex = labelCex, srt = labelSrt,
offset = labelOffset)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.