Nothing
#------------------------------------------------------------------------------------------------------------------------
#' An S4 class to represent a LASSO P-Value solver
#'
#' @include Solver.R
#' @import lassopv
#' @import methods
#'
#' @name LassoPVSolver-class
.LassoPVSolver <- setClass ("LassoPVSolver", contains="Solver")
#------------------------------------------------------------------------------------------------------------------------
#' Create a Solver class object using the LASSO P-Value solver
#'
#' @param mtx.assay An assay matrix of gene expression data
#' @param quiet A logical denoting whether or not the solver should print output
#'
#' @return A Solver class object with LASSO P-Value as the solver
#'
#' @seealso \code{\link{solve.LassoPV}}, \code{\link{getAssayData}}
#'
#' @family Solver class objects
#'
#' @export
#'
#' @examples
#' solver <- LassoPVSolver()
LassoPVSolver <- function(mtx.assay=matrix(), quiet=TRUE)
{
obj <- .LassoPVSolver(Solver(mtx.assay=mtx.assay, quiet=quiet))
# Send a warning if there's a row of zeros
if(!is.na(max(mtx.assay)) & any(rowSums(mtx.assay) == 0))
warning("One or more gene has zero expression; this may cause problems when using P-Value LASSO. You may want to try 'lasso' or 'ridge' instead.")
obj
} # LassoPVSolver, the constructor
#----------------------------------------------------------------------------------------------------
#' Run the LASSO P-Value Solver
#'
#' @rdname solve.LassoPV
#' @aliases run.LassoPVSolver solve.LassoPV
#'
#' @description Given a TReNA object with LASSO P-Value as the solver, use the \code{\link{lassopv}}
#' function to estimate coefficients for each transcription factor as a predictor of the target
#' gene's expression level. This method should be called using the \code{\link{solve}} method on an
#' appropriate TReNA object.
#'
#' @param obj An object of class Solver with "lassopv" as the solver string
#' @param target.gene A designated target gene that should be part of the mtx.assay data
#' @param tfs The designated set of transcription factors that could be associated with the target gene.
#' @param tf.weights A set of weights on the transcription factors (default = rep(1, length(tfs)))
#' @param extraArgs Modifiers to the Lasso P-Value solver
#'
#' @return A data frame containing the p-values for each transcription factor pertaining to the target gene
#' plus the Pearson correlations between each transcription factor and the target gene.
#'
#' @seealso \code{\link{lassopv}}, , \code{\link{LassoPVSolver}}
#'
#' @family solver methods
#'
#' @examples
#' # Load included Alzheimer's data, create a TReNA object with Bayes Spike as solver, and solve
#' load(system.file(package="TReNA", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' trena <- TReNA(mtx.assay = mtx.sub, solver = "lassopv")
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' tbl <- solve(trena, target.gene, tfs)
setMethod("run", "LassoPVSolver",
function (obj, target.gene, tfs, tf.weights=rep(1,length(tfs)), extraArgs=list()){
if(length(tfs) == 0)
return(data.frame())
# Check if target.gene is in the bottom 10% in mean expression; if so, send a warning
if(rowMeans(getAssayData(obj))[target.gene] < stats::quantile(rowMeans(getAssayData(obj)), probs = 0.1)){
warning("Target gene mean expression is in the bottom 10% of all genes in the assay matrix")
}
# we don't try to handle tf self-regulation
deleters <- grep(target.gene, tfs)
if(length(deleters) > 0){
tfs <- tfs[-deleters]
if(!obj@quiet)
message(sprintf("LassoPVSolver removing target.gene from candidate regulators: %s", target.gene))
}
if( length(tfs) == 0 ) return( data.frame() )
mtx <- getAssayData(obj)
stopifnot(target.gene %in% rownames(mtx))
stopifnot(all(tfs %in% rownames(mtx)))
features <- t(mtx[tfs,,drop=FALSE ])
target <- as.numeric(mtx[target.gene,])
# Run LASSO P-Value and return the P-values, ordered by increasing value
fit <- lassopv(features, target)
fit <- fit[order(fit, decreasing=FALSE)]
# Add pearson correlations and make a data frame
correlations.of.betas.to.targetGene <- unlist(lapply(names(fit),
function(x) stats::cor(mtx[x,], mtx[target.gene,])))
tbl <- data.frame(row.names = names(fit),
p.values = fit,
gene.cor=correlations.of.betas.to.targetGene)
return(tbl)
})
#----------------------------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.