Description Usage Arguments Details Value Author(s) References Examples
Allows the user to apply normalization routines to ExpressionSets.
1 2 3 4 5 6 7 8 9 10 11 | normalize.ExpressionSet.quantiles(eset, transfn=c("none","log","antilog"))
normalize.ExpressionSet.loess(eset, transfn=c("none","log","antilog"),...)
normalize.ExpressionSet.contrasts(eset, span = 2/3,
choose.subset=TRUE, subset.size=5000, verbose=TRUE, family="symmetric",
transfn=c("none","log","antilog"))
normalize.ExpressionSet.qspline(eset, transfn=c("none","log","antilog"),...)
normalize.ExpressionSet.invariantset(eset,prd.td=c(0.003, 0.007),
verbose=FALSE, transfn=c("none","log","antilog"),
baseline.type=c("mean","median","pseudo-mean","pseudo-median"))
normalize.ExpressionSet.scaling(eset, trim=0.02, baseline=-1,
transfn=c("none","log","antilog"))
|
eset |
An |
span |
parameter to be passed to the function
|
choose.subset |
use a subset of values to establish the normalization relationship |
subset.size |
number to use for subset |
verbose |
verbosity flag |
family |
parameter to be passed to the function
|
prd.td |
cutoff parameter (details in the bibliographic reference) |
trim |
How much to trim from the top and bottom before computing the mean when using the scaling normalization |
baseline |
Index of array to use as baseline, negative values (-1,-2,-3,-4) control different baseline selection methods |
transfn |
Transform the ExpressionSet before normalizing. Useful when dealing with expression values that are log-scale |
baseline.type |
A method of selecting the baseline array |
... |
Additional parameters that may be passed to the normalization routine |
This function carries out normalization of expression values. In general you should either normalize at the probe level or at the expression value level, not both.
Typing normalize.ExpressionSet.methods
should give you a list of
methods that you may use. note that you can also use the
normalize
function on ExpressionSets. Use method
to select the
normalization method.
A normalized ExpressionSet
.
Ben Bolstad, bmb@bmbolstad.com
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.