Description Usage Arguments Details Value Author(s) References See Also Examples
This function converts an
AffyBatch
into an
PLMset
by fitting a specified robust linear model to the
probe level data.
1 2 3 4 5 6 7 8 9 | fitPLM(object,model=PM ~ -1 + probes +samples,
variable.type=c(default="factor"),
constraint.type=c(default="contr.treatment"),
subset=NULL,
background=TRUE, normalize=TRUE, background.method="RMA.2",
normalize.method="quantile", background.param=list(),
normalize.param=list(), output.param=verify.output.param(),
model.param=verify.model.param(object, model),
verbosity.level=0)
|
object |
an |
model |
A formula describing the model to fit. This is slightly different from the standard method of specifying formulae in R. Read the description below |
variable.type |
a way to specify whether variables in the model are factors or standard variables |
constraint.type |
should factor variables sum to zero or have first variable set to zero (endpoint constraint) |
subset |
a vector with the names of probesets to be used. If NULL then all probesets are used. |
normalize |
logical value. If |
background |
logical value. If |
background.method |
name of background method to use. |
normalize.method |
name of normalization method to use. |
background.param |
A list of parameters for background routines |
normalize.param |
A list of parameters for normalization routines |
output.param |
A list of parameters controlling optional output from the routine. |
model.param |
A list of parameters controlling model procedure |
verbosity.level |
An integer specifying how much to print out. Higher values indicate more verbose. A value of 0 will print nothing |
This function fits robust Probe Level linear Models to all the probesets in
an AffyBatch
. This is carried out
on a probeset by probeset basis. The user has quite a lot of control
over which model is used and what outputs are stored. For more details
please read the vignette.
An PLMset
Ben Bolstad bmb@bmbolstad.com
Bolstad, BM (2004) Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. PhD Dissertation. University of California, Berkeley.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | if (require(affydata)) {
data(Dilution)
Pset <- fitPLM(Dilution, model=PM ~ -1 + probes + samples)
se(Pset)[1:5,]
image(Pset)
NUSE(Pset)
#now lets try a wider class of models
## Not run: Pset <- fitPLM(Dilution,model=PM ~ -1 + probes +liver,
normalize=FALSE,background=FALSE)
## End(Not run)
## Not run: coefs(Pset)[1:10,]
## Not run: Pset <- fitPLM(Dilution,model=PM ~ -1 + probes + liver +
scanner, normalize=FALSE,background=FALSE)
## End(Not run)
coefs(Pset)[1:10,]
#try liver as a covariate
logliver <- log2(c(20,20,10,10))
## Not run: Pset <- fitPLM(Dilution, model=PM~-1+probes+logliver+scanner,
normalize=FALSE, background=FALSE, variable.type=c(logliver="covariate"))
## End(Not run)
coefs(Pset)[1:10,]
#try a different se.type
## Not run: Pset <- fitPLM(Dilution, model=PM~-1+probes+scanner,
normalize=FALSE,background=FALSE,m odel.param=list(se.type=2))
## End(Not run)
se(Pset)[1:10,]
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.