Description Usage Arguments Details Value See Also Examples
View source: R/generateExprVal.method.pdnn.R
Computes PM correction and summary expression value with PDNN method.
1 2 3 4 5 | pmcorrect.pdnn(object, params, gene=NULL, gene.i=NULL,
params.chiptype=NULL, outlierlim=3, callingFromExpresso=FALSE)
pmcorrect.pdnnpredict(object, params, gene=NULL, gene.i=NULL,
params.chiptype=NULL, outlierlim=3, callingFromExpresso=FALSE)
generateExprVal.method.pdnn(probes, params)
|
object |
object of |
probes |
matrix of PM-corrected signals (should be coming out of
|
params |
experiments specific parameters. |
gene |
gene (probe set) ID (from wich the |
gene.i |
gene index (see details). |
params.chiptype |
chip-specific parameters. |
outlierlim |
threshold for tagging a probe as an outlier. |
callingFromExpresso |
is the function called through expresso. DO NOT play with that. |
Only one of gene
, gene.i
should be specified. For most
the users, this is gene
.
pmcorrect.pdnn
and pmcorrect.pdnnpredict
return what is called GSB and GSB + NSB + B in the paper by Zhang Li
and collaborators.
pmcorrect.pdnn
and pmcorrect.pdnnpredict
return a matrix (one row per probe, one column
per chip) with attributes attached. generateExprVal
returns a
list
:
exprs |
expression values |
se.exprs |
se expr. val. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | data(hgu95av2.pdnn.params)
library(affydata)
data(Dilution)
## only one CEL to go faster
abatch <- Dilution[, 1]
## get the chip specific parameters
params <- find.params.pdnn(abatch, hgu95av2.pdnn.params)
## The thrill part: do we get like in the Figure 1-a of the reference ?
par(mfrow=c(2,2))
##ppset.name <- sample(featureNames(abatch), 2)
ppset.name <- c("41206_r_at", "31620_at")
ppset <- probeset(abatch, ppset.name)
for (i in 1:2) {
##ppset[[i]] <- transform(ppset[[i]], fun=log) # take the log as they do
probes.pdnn <- pmcorrect.pdnnpredict(ppset[[i]], params,
params.chiptype=hgu95av2.pdnn.params)
##probes.pdnn <- log(probes.pdnn)
plot(ppset[[i]], main=paste(ppset.name[i], "\n(raw intensities)"))
matplotProbesPDNN(probes.pdnn, main=paste(ppset.name[i], "\n(predicted intensities)"))
}
## pick the 50 first probeset IDs
## (to go faster)
ids <- featureNames(abatch)[1:100]
## compute the expression set (object of class 'ExpressionSet')
eset <- computeExprSet(abatch, pmcorrect.method="pdnn",
summary.method="pdnn", ids=ids,
summary.param = list(params, params.chiptype=hgu95av2.pdnn.params))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.