plotMarkerDendro: Plots dendrogram of _findMarkersTree_ output

Description Usage Arguments Value Examples

View source: R/findMarkersTree.R

Description

Generates a dendrogram of the rules and performance (optional) of the decision tree generated by findMarkersTree().

Usage

1
2
3
4
5
6
7
8
9
plotMarkerDendro(
  tree,
  classLabel = NULL,
  addSensPrec = FALSE,
  maxFeaturePrint = 4,
  leafSize = 10,
  boxSize = 2,
  boxColor = "black"
)

Arguments

tree

List object. The output of findMarkersTree()

classLabel

A character value. The name of a specific label to draw the path and rules. If NULL (default), the tree for all clusters is shown.

addSensPrec

Logical. Print training sensitivities and precisions for each cluster below leaf label? Default is FALSE.

maxFeaturePrint

Numeric value. Maximum number of markers to print at a given split. Default is 4.

leafSize

Numeric value. Size of text below each leaf. Default is 24.

boxSize

Numeric value. Size of rule labels. Default is 7.

boxColor

Character value. Color of rule labels. Default is black.

Value

A ggplot2 object

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
## Not run: 
# Generate simulated single-cell dataset using celda
sim_counts <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100)

# Celda clustering into 5 clusters & 10 modules
cm <- celda_CG(sim_counts$counts, K = 5, L = 10, verbose = FALSE)

# Get features matrix and cluster assignments
factorized <- factorizeMatrix(sim_counts$counts, cm)
features <- factorized$proportions$cell
class <- celdaClusters(cm)

# Generate Decision Tree
DecTree <- findMarkersTree(features, class, threshold = 1)

# Plot dendrogram
plotMarkerDendro(DecTree)

## End(Not run)

celda documentation built on Nov. 8, 2020, 8:24 p.m.