Description Usage Arguments Details Value Author(s) Examples
Normalize query sample intensities by fitting intensities to reference set using a linear regression model.
1 2 3 4 5 |
query |
|
ref |
|
anno |
|
... |
Additional parameters ( |
name |
character. Optional parameter to set query sample name. |
intercept |
logical. Should intercept be considered? Defaults to |
The log2 ratio of query intensities versus a linear combination of reference set intensities that best reflects query intensities is calculated (as determined by linear regression). The annotations provided to CNV.fit
are saved within the returned CNV.analysis
object and used for subsequent analysis steps.
CNV.analysis
object.
Volker Hovestadt conumee@hovestadt.bio
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # prepare
library(minfiData)
data(MsetEx)
d <- CNV.load(MsetEx)
data(detail_regions)
anno <- CNV.create_anno(detail_regions = detail_regions)
# create object
x <- CNV.fit(query = d['GroupB_1'], ref = d[c('GroupA_1', 'GroupA_2', 'GroupA_3')], anno)
# modify object
#x <- CNV.bin(x)
#x <- CNV.detail(x)
#x <- CNV.segment(x)
# general information
x
show(x)
# coefficients of linear regression
coef(x)
# show or replace sample name
names(x)
names(x) <- 'Sample 1'
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.