R/catchKallisto.R

Defines functions catchKallisto

Documented in catchKallisto

catchKallisto <- function(paths,verbose=TRUE)
#	Read transcriptwise counts and bootstrap samples from kallisto output
#	Use bootstrap samples to estimate overdispersion of transcriptwise counts
#	Gordon Smyth
#	Created 2 April 2018. Last modified 7 Aug 2019.
{
	NSamples <- length(paths)

#	Use rhdf5 package for reading
	suppressPackageStartupMessages(OK <- requireNamespace("rhdf5",quietly=TRUE))
	if(!OK) stop("rhdf5 package required but is not installed (or can't be loaded)")

#	Accumulate counts and CV^2 of bootstrap counts for each sample
	for (j in 1L:NSamples) {
		if(verbose) cat("Reading ",paths[j],", ",sep="")

#		Open H5 file
		h5File <- file.path(paths[j],"abundance.h5")
		if(!file.exists(h5File)) stop("abundance.h5 file not found at specified path")
		h5 <- rhdf5::H5Fopen(h5File)

#		Auxiliary information
		aux <- h5$aux
		NTx <- length(aux$lengths)
		NBoot <- as.integer(aux$num_bootstrap)
		if(verbose) cat(NTx,"transcripts,",NBoot,"bootstraps\n")

#		Store counts
		if(j == 1L) {
			Counts <- matrix(0,NTx,NSamples)
			DF <- rep_len(0L,NTx)
			OverDisp <- rep_len(0,NTx)
		}
		Counts[,j] <- h5$est_counts

#		Bootstraps
		if(NBoot > 0L) Boot <- do.call(cbind,h5$bootstrap)

#		Close H5 file
		rhdf5::H5Fclose(h5)

#		Summarize bootstrap samples
		if(NBoot > 0L) {
			M <- rowMeans(Boot)
			i <- (M > 0)
			OverDisp[i] <- OverDisp[i] + rowSums((Boot[i,]-M[i])^2) / M[i]
			DF[i] <- DF[i]+NBoot-1L
		}
	}

#	Estimate overdispersion for each transcript
	i <- (DF > 0L)
	if(sum(i) > 0L) {
		OverDisp[i] <- OverDisp[i] / DF[i]
#		Apply a limited amount of moderation
		DFMedian <- median(DF[i])
		DFPrior <- 3
		OverDispPrior <- median(OverDisp[i]) / qf(0.5,df1=DFMedian,df2=DFPrior)
		if(OverDispPrior < 1) OverDispPrior <- 1
		OverDisp[i] <- (DFPrior * OverDispPrior + DF[i]*OverDisp[i]) / (DFPrior + DF[i])
		OverDisp <- pmax(OverDisp,1)
		OverDisp[!i] <- OverDispPrior
	} else {
		OverDisp[] <- NA_real_
		OverDispPrior <- NA_real_
	}

#	Prepare output
	Ann <- data.frame(
	    Length=as.integer(aux$lengths),
	    EffectiveLength=aux$eff_lengths,
	    Overdispersion=OverDisp,
	    row.names=aux$ids,
	    stringsAsFactors=FALSE)
	dimnames(Counts) <- list(aux$ids,paths)

	list(counts=Counts,annotation=Ann,overdispersion.prior=OverDispPrior)
}

Try the edgeR package in your browser

Any scripts or data that you put into this service are public.

edgeR documentation built on Jan. 16, 2021, 2:03 a.m.