Nothing
# Estimate trended dispersions using exact conditional likelihood
estimateTrendedDisp <- function(y, ...)
UseMethod("estimateTrendedDisp")
estimateTrendedDisp.DGEList <- function(y, method="bin.spline", df=5, span=2/3, ...)
# Yunshun Chen. Created 18 March 2016.
{
y <- validDGEList(y)
group <- y$samples$group
lib.size <- y$samples$lib.size * y$samples$norm.factors
if(is.null(y$AveLogCPM)) y$AveLogCPM <- aveLogCPM(y)
out <- estimateTrendedDisp(y$counts, group=group, lib.size=lib.size, AveLogCPM=y$AveLogCPM, method=method, df=df, span=span)
y$trended.method <- method
y$trended.dispersion <- out
y
}
estimateTrendedDisp.default <- function(y, group=NULL, lib.size=NULL, AveLogCPM=NULL, method="bin.spline", df=5, span=2/3, ...)
# Yunshun Chen, Gordon Smyth.
# Created 2 Feb 2012, last modified on 16 May 2019.
{
# Check y
y <- as.matrix(y)
ntags <- nrow(y)
nlibs <- ncol(y)
# Check group
if(is.null(group)) group <- rep(1, nlibs)
if(length(group)!=nlibs) stop("Incorrect length of group.")
group <- dropEmptyLevels(group)
# Check lib.size
if(is.null(lib.size)) lib.size <- colSums(y)
if(length(lib.size)!=nlibs) stop("Incorrect length of lib.size.")
# Check AveLogCPM
if(is.null(AveLogCPM)) AveLogCPM <- aveLogCPM(y, lib.size=lib.size)
# Check method
method <- match.arg(method, c("bin.spline", "bin.loess"))
nbins <- 50
if(nbins > ntags) stop("nbins greater than number of rows of data")
bins <- cutWithMinN(AveLogCPM, intervals=nbins, min.n=floor(ntags/nbins))
disp.bins <- AveLogCPM.bins <- rep_len(NA_real_, nbins)
for(i in 1:nbins) {
tagsinbin <- bins$group==i
disp.bins[i] <- estimateCommonDisp(y[tagsinbin,], group=group, lib.size=lib.size, rowsum.filter=0)
AveLogCPM.bins[i] <- mean(AveLogCPM[tagsinbin])
}
if( method=="bin.spline" ) {
if(!requireNamespace("splines",quietly=TRUE)) stop("splines required but is not available")
p1 <- (1:(df-1))/df
knots1 <- quantile(AveLogCPM.bins, probs=p1)
r <- range(AveLogCPM.bins)
knots2 <- r[1] + p1*(r[2]-r[1])
knots <- 0.3*knots1 + 0.7*knots2
basisbins <- splines::ns(AveLogCPM.bins, df=df, knots=knots, intercept=TRUE)
beta <- coefficients(lm.fit(basisbins, sqrt(disp.bins)))
basisall <- predict(basisbins, newx=AveLogCPM)
trended.dispersion <- drop(basisall %*% beta)^2
}
if( method=="bin.loess" ) {
fit <- loessFit(sqrt(disp.bins), AveLogCPM.bins, span=span, iterations=1)
f <- approxfun(AveLogCPM.bins, fit$fitted, rule=2, ties=list("ordered",mean))
trended.dispersion <- f(AveLogCPM)^2
}
trended.dispersion
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.