Nothing
# compute the "real" BIC for group-lasso (to check !!)
# ie compute the degree of freedom for each model
modelselection <- function(BICcst, loss.set, beta.refit, beta.avantrefit, size.set, n.nodes, n.samples, mergerefit) {
if(n.samples==1 | mergerefit) {
degreef <- size.set
} else {
degreef <- sapply(1:length(beta.refit), FUN=function(ss){
tosum <- sapply(1:ncol(beta.refit[[ss]]), FUN=function(pp){
l2norm_refit <- sqrt(sum( beta.refit[[ss]][,pp]^2 ))
if(l2norm_refit > 0){
l2norm_avantrefit <- sqrt(sum( t(beta.avantrefit[[ss]])[,pp]^2 ))
return(1 + (n.samples-1)*l2norm_avantrefit/l2norm_refit)
} else {
return(0) }})
return(sum(tosum))})
}
select <- which.min(loss.set + BICcst*degreef*log(n.nodes)) # BICcst useful ? don't know ...
return(select)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.