Nothing
batchFit <- function(y, probe, sigma, tau, maxiter=100){
nchip <- ncol(y)
nprobe <- nrow(y)
y.new <- as.vector(y - probe) #kill any names
n <- length(y)
wt <- matrix(rep(1/as.vector(sigma), nchip), nrow=nprobe)
#rlm setup, taken from the rlm function
irls.delta <- function(old, new)
sqrt(sum((old - new)^2)/max(1e-20, sum(old^2)))
psi.huber <- function(u, k=1.145) pmin(1, k/abs(u))
# Setup for linear regression
xtx <- matrix(0., ncol=(nchip+nprobe), nrow=nchip+nprobe)
i1 <- seq(1, length=nchip+nprobe, by=nchip+nprobe+1) #index of diagonal
i2a <- which(row(xtx) <= nprobe & col(xtx) >nprobe)
i2b <- c(outer(seq(nprobe, length=nprobe, by=nrow(xtx)), 1:nchip, '+'))
i3 <- as.vector(row(y)) #gamma coefs
i4 <- as.vector(col(y)) + nprobe #theta coefs
sqwt <- sqrt(wt)
w <- rep(1., length(y))
# Initial linear regression
xtx[i1] <- c(rowSums(wt) + 1/tau, colSums(wt))
xtx[i2a] <- wt
xtx[i2b] <- wt
xty <- c(rowSums(wt*y.new), colSums(wt*y.new))
beta <- solve(xtx, xty)
resid <- sqwt * (beta[i3] + beta[i4] - y.new) # weighted residuals
for (iter in 1:maxiter) {
oldresid <- resid
scale <- median(abs(resid))/.6745
w <- matrix(psi.huber(resid/scale, k=1.345), nrow=nprobe)
w2 <- w*wt
xtx[i1] <- c(rowSums(w2) + 1/tau, colSums(w2))
xtx[i2a] <- w2
xtx[i2b] <- w2
temp <- w2* y.new
xty <- c(rowSums(temp), colSums(temp))
beta <- solve(xtx, xty)
resid <- sqwt * (beta[i3] + beta[i4] - y.new) # weighted residuals
convi <- irls.delta(oldresid, resid)
if (convi < 1e-4) break
}
return(list(Estimates=beta[-(1:nprobe)], Weights=as.vector(t(w)), Gamma=beta[1:nprobe]))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.