Description Usage Arguments Value See Also Examples
Draws multiple kaplan meyer survival curves (or just 1) and calculates logrank test
1 2 3 4 5 6 7 8 9 10 11 12 13 |
chosen.btas |
list of testing coefficients to calculate prognostic indexes, for example “list(Age = some_vector)“ |
xdata |
n x m matrix with n observations and m variables |
ydata |
Survival object |
probs |
How to separate high and low risk patients 50%-50% is the default, but for top and bottom 40% -> c(.4,.6) |
no.plot |
Only calculate p-value and do not generate survival curve plot |
plot.title |
Name of file if |
xlim |
Optional argument to limit the x-axis view |
ylim |
Optional argument to limit the y-axis view |
expand.yzero |
expand to y = 0 |
legend.outside |
If TRUE legend will be outside plot, otherwise inside |
... |
additional parameters to survminer::ggsurvplot |
object with logrank test and kaplan-meier survival plot
A list with plot, p-value and kaplan-meier object. The plot was drawn from survminer::ggsurvplot with only the palette, data and fit arguments being defined and keeping all other defaults that can be customized as additional parameters to this function.
survminer::ggsurvplot
1 2 3 4 5 6 7 8 9 | data('cancer', package = 'survival')
xdata <- ovarian[,c('age', 'resid.ds')]
ydata <- data.frame(time = ovarian$futime, status = ovarian$fustat)
separate2GroupsCox(c(age = 1, 0), xdata, ydata)
separate2GroupsCox(c(age = 1, 0.5), xdata, ydata)
separate2GroupsCox(c(age = 1), c(1,0,1,0,1,0),
data.frame(time = runif(6), status = rbinom(6, 1, .5)))
separate2GroupsCox(list(aa = c(age = 1, 0.5),
bb = c(age = 0, 1.5)), xdata, ydata)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.