glmSparseNet: Calculate GLM model with network-based regularization

Description Usage Arguments Details Value Examples

View source: R/network.glmnet.R

Description

network parameter accepts:

Usage

1
2
3
4
5
6
7
8
glmSparseNet(
  xdata,
  ydata,
  network,
  network.options = networkOptions(),
  experiment.name = NULL,
  ...
)

Arguments

xdata

input data, can be a matrix or MultiAssayExperiment

ydata

response data compatible with glmnet

network

type of network, see below

network.options

options to calculate network

experiment.name

name of experiment to use as input in MultiAssayExperiment object (only if xdata is an object of this class)

...

parameters that glmnet accepts

Details

* string to calculate network based on data (correlation, covariance) * matrix representing the network * vector with already calculated penalty weights (can also be used directly with glmnet)

Value

an object just as glmnet

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
xdata <- matrix(rnorm(100), ncol = 20)
glmSparseNet(xdata, rnorm(nrow(xdata)), 'correlation', family = 'gaussian')
glmSparseNet(xdata, rnorm(nrow(xdata)), 'covariance', family = 'gaussian')

#
#
# Using MultiAssayExperiment
# load data
xdata <- MultiAssayExperiment::miniACC
# TODO aking out x indivudals missing values
# build valid data with days of last follow up or to event
event.ix <- which(!is.na(xdata$days_to_death))
cens.ix <- which(!is.na(xdata$days_to_last_followup))
xdata$surv_event_time <- array(NA, nrow(colData(xdata)))
xdata$surv_event_time[event.ix] <- xdata$days_to_death[event.ix]
xdata$surv_event_time[cens.ix] <- xdata$days_to_last_followup[cens.ix]
# Keep only valid individuals
valid.ix <- as.vector(!is.na(xdata$surv_event_time) &
                      !is.na(xdata$vital_status) &
                      xdata$surv_event_time > 0)
xdata.valid <- xdata[, rownames(colData(xdata))[valid.ix]]
ydata.valid <- colData(xdata.valid)[,c('surv_event_time', 'vital_status')]
colnames(ydata.valid) <- c('time', 'status')
glmSparseNet(xdata.valid,
             ydata.valid,
             family          = 'cox',
             network         = 'correlation',
             experiment.name = 'RNASeq2GeneNorm')

glmSparseNet documentation built on April 14, 2021, 6 p.m.