Nothing
### R code from vignette source 'gprege_quick.Rnw'
###################################################
### code chunk number 1: gprege_quick.Rnw:31-32
###################################################
options(width = 60)
###################################################
### code chunk number 2: gprege_quick.Rnw:47-50 (eval = FALSE)
###################################################
## if (!requireNamespace("BiocManager", quietly=TRUE))
## install.packages("BiocManager")
## BiocManager::install("gprege")
###################################################
### code chunk number 3: gprege_quick.Rnw:57-58
###################################################
library(gprege)
###################################################
### code chunk number 4: gprege_quick.Rnw:63-64 (eval = FALSE)
###################################################
## data(FragmentDellaGattaData)
###################################################
### code chunk number 5: gprege_quick.Rnw:69-73 (eval = FALSE)
###################################################
## # Download full Della Gatta dataset.
## load(url('https://github.com/alkalait/gprege-datasets/raw/master/R/DellaGattaData.RData'))
## # OR
## data(FullDellaGattaData)
###################################################
### code chunk number 6: gprege_quick.Rnw:81-92
###################################################
# Download full Della Gatta dataset.
## con <- url('https://github.com/alkalait/gprege-datasets/raw/master/R/DellaGattaData.RData')
## attempts = 0
## while(!exists('DGdata') && attempts < 3) {
## try(load(con),TRUE) # close.connection(con)
## attempts = attempts + 1
## }
data(FullDellaGattaData)
# Timepoints / GP inputs.
tTrue = matrix(seq(0,240,by=20), ncol=1)
gpregeOptions <- list()
###################################################
### code chunk number 7: gprege_quick.Rnw:95-98 (eval = FALSE)
###################################################
## data(FullDellaGattaData)
## # Set index range so that only a top few targets suggested by TSNI be explored.
## gpregeOptions$indexRange <- which(DGatta_labels_byTSNItop100)[1:2]
###################################################
### code chunk number 8: gprege_quick.Rnw:101-106
###################################################
# Load installed fragment-dataset.
data(FragmentDellaGattaData)
# Fragment dataset is comprised of top-ranked targets suggested by TSNI.
# Explore only the first few.
gpregeOptions$indexRange <- 1:2
###################################################
### code chunk number 9: gprege_quick.Rnw:109-130
###################################################
# Explore individual profiles in interactive mode.
gpregeOptions$explore <- TRUE
# Exhaustive plot resolution of the LML function.
gpregeOptions$exhaustPlotRes <- 30
# Exhaustive plot contour levels.
gpregeOptions$exhaustPlotLevels <- 10
# Exhaustive plot maximum lengthscale.
gpregeOptions$exhaustPlotMaxWidth <- 100
# Noisy ground truth labels: which genes are in the top 786 ranks of the TSNI ranking.
gpregeOptions$labels <- DGatta_labels_byTSNItop100
# SCG optimisation: maximum number of iterations.
gpregeOptions$iters <- 100
# SCG optimisation: no messages.
gpregeOptions$display <- FALSE
# Matrix of different hyperparameter configurations as rows:
# [inverse-lengthscale percent-signal-variance percent-noise-variance].
gpregeOptions$inithypers <-
matrix( c( 1/1000, 1e-3, 0.999,
1/30, 0.999, 1e-3,
1/80, 2/3, 1/3
), ncol=3, byrow=TRUE)
###################################################
### code chunk number 10: gprege_quick.Rnw:133-134
###################################################
gpregeOutput<-gprege(data=exprs_tp63_RMA,inputs=tTrue,gpregeOptions=gpregeOptions)
###################################################
### code chunk number 11: gprege_quick.Rnw:136-156
###################################################
for (i in 1:length(gpregeOptions$indexRange)) {
cat("\\begin{figure}[H]")
cat("\\centering")
# cat("\\subfigure[]{")
cat("\\includegraphics[width=0.7\\linewidth]{", paste("gpPlot",i,".pdf",sep=""), "}\n\n", sep="")
# cat("\\label{fig:seqfig", i, "}", sep = "")
cat("\\caption{GP fit with different initialisations on profile \\#", gpregeOptions$indexRange[i], ".}", sep="")
cat("\\label{fig:gpPlot", i, "}", sep = "")
cat("\\end{figure}")
cat("\\begin{figure}[H]")
cat("\\centering")
cat("\\subfigure[]{")
cat("\\includegraphics[page=1,width=.7\\linewidth]{",paste("exhaustivePlot",i,".pdf",sep=""),"}}\n\n", sep="")
cat("\\subfigure[]{")
cat("\\includegraphics[page=2,width=.7\\linewidth]{",paste("exhaustivePlot",i,".pdf",sep=""),"}}\n\n", sep="")
cat("\\caption{Profile \\#", gpregeOptions$indexRange[i], " : (a) Log-marginal likelihood (LML) contour. (b) GP fit with maximum LML hyperparameters from the exhaustive search.}", sep = "")
cat("\\label{fig:exPlot", i, "}", sep = "")
cat("\\end{figure}")
}
###################################################
### code chunk number 12: gprege_quick.Rnw:163-185
###################################################
# Load fragment dataset.
data(FragmentDellaGattaData)
data(DGdat_p63)
# Download BATS rankings (Angelini, 2007)
# Case 1: Delta error prior, case 2: Inverse Gamma error prior,
# case 3: Double Exponential error prior.
BATSranking = matrix(0, length(DGatta_labels_byTSNItop100), 3)
##for (i in 1:3){
## # Read gene numbers.
## tmp = NULL
## con <- url(paste('https://github.com/alkalait/gprege-datasets/raw/master/R/DGdat_p63_case',i,'_GL.txt',sep=''))
## while(is.null(tmp)) try(tmp <- read.table(con, skip=1), TRUE)
## genenumbers <- as.numeric(lapply( as.character(tmp[,2]), function(x) x=substr(x,2,nchar(x))))
## # Sort rankqings by gene numbers.
## BATSranking[,i] <- tmp[sort(genenumbers, index.return=TRUE)$ix, 4]
##}
genenumbers <- as.numeric(lapply(as.character(DGdat_p63_case1_GL[,2]), function(x) x=substr(x,2,nchar(x))))
BATSranking[,1] <- DGdat_p63_case1_GL[sort(genenumbers, index.return=TRUE)$ix, 4]
genenumbers <- as.numeric(lapply(as.character(DGdat_p63_case2_GL[,2]), function(x) x=substr(x,2,nchar(x))))
BATSranking[,2] <- DGdat_p63_case2_GL[sort(genenumbers, index.return=TRUE)$ix, 4]
genenumbers <- as.numeric(lapply(as.character(DGdat_p63_case3_GL[,2]), function(x) x=substr(x,2,nchar(x))))
BATSranking[,3] <- DGdat_p63_case3_GL[sort(genenumbers, index.return=TRUE)$ix, 4]
###################################################
### code chunk number 13: gprege_quick.Rnw:189-196
###################################################
# The smaller a BATS-rank metric is, the better the rank of the gene
# reporter. Invert those rank metrics to compare on a common ground
# with gprege.
BATSranking = 1/BATSranking
compareROC(output=gpregeOutput$rankingScores,
groundTruthLabels=DGatta_labels_byTSNItop100,
compareToRanking=BATSranking)
###################################################
### code chunk number 14: gprege_quick.Rnw:208-237 (eval = FALSE)
###################################################
## # Download full Della Gatta dataset.
## #con <- url('https://github.com/alkalait/gprege-datasets/raw/master/R/DellaGattaData.RData')
## #while(!exists('DGdata')) try(load(con),TRUE); close.connection(con)
## data(FullDellaGattaData)
## # Timepoints / GP inputs.
## tTrue = matrix(seq(0,240,by=20), ncol=1)
## gpregeOptions <- list()
## # Explore individual profiles in interactive mode.
## gpregeOptions$explore <- FALSE
## # Exhaustive plot resolution of the LML function.
## gpregeOptions$exhaustPlotRes <- 30
## # Exhaustive plot contour levels.
## gpregeOptions$exhaustPlotLevels <- 10
## # Exhaustive plot maximum lengthscale.
## gpregeOptions$exhaustPlotMaxWidth <- 100
## # Noisy ground truth labels: which genes are in the top 786 ranks of the TSNI ranking.
## gpregeOptions$labels <- DGatta_labels_byTSNItop100
## # SCG optimisation: maximum number of iterations.
## gpregeOptions$iters <- 100
## # SCG optimisation: no messages.
## gpregeOptions$display <- FALSE
## # Matrix of different hyperparameter configurations as rows:
## # [inverse-lengthscale percent-signal-variance percent-noise-variance].
## gpregeOptions$inithypers <-
## matrix( c( 1/1000, 1e-3, 0.999,
## 1/8, 0.999, 1e-3,
## 1/80, 2/3, 1/3
## ), ncol=3, byrow=TRUE)
## gpregeOutput<-gprege(data=exprs_tp63_RMA,inputs=tTrue,gpregeOptions=gpregeOptions)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.