Description Usage Arguments Details Value See Also Examples
View source: R/plotKaryotype.R
Create a new empty plot with a karyotype (the chromosome ideograms and chromosome names).
1 | plotKaryotype(genome="hg19", plot.type=1, ideogram.plotter=kpAddCytobands, labels.plotter=kpAddChromosomeNames, chromosomes="auto", zoom=NULL, cytobands=NULL, plot.params=NULL, use.cache=TRUE, main=NULL, ...)
|
genome |
The genome to plot. It can be either a UCSC style genome name (hg19, mm10, etc), a BSgenome, a Seqinfo object, a GRanges object with the chromosomes as ranges or in general any genome specification accepted by |
plot.type |
The orientation of the ideogram and placing of the data panels. Values explained above.. (defaults to 1) |
ideogram.plotter |
The function to be used to plot the ideograms. Only one function is included with the package, |
labels.plotter |
The function to be used to plot the labels identifying the chromosomes. Only one function is included with the package, |
chromosomes |
The chromosomes to plot. Can be either a vector of chromosome names or a chromosome group name ("canonical", "autosomal", "all"). Setting it yo "auto" will select canonical for named genomes and no filtering for custom genomes. (defaults to "auto") |
zoom |
A GRanges object specifiyng a single region to zoom in or any format accepted by |
cytobands |
A GRanges object (or anything accepted by |
plot.params |
An object obtained from |
use.cache |
|
main |
The text to be used as the title of the plot. NULL produces no title. (defaults to NULL) |
... |
The ellipsis can be used to pass in any additional parameter accepted by the internal functions used. |
This is the main function of karyoploteR
. It creates the basic empty plot with
the chromosome ideograms and returns the karyoplot object needed for all other plotting
functions. Both the basic plotting parameters (margins, sizes, etc.) and the specific
plotting functions for the ideograms and chromosome labels are customizable.
In particular, passing in a plot.params
object specifies the basic plotting
parameters to use and the ideogram.plotter
and labels.plotter
parameters
can be used to specify custom plotting functions for the ideogram and the chromosome
labels. It is also possible to specify the genome and a list with the chromosomes to
be plotted.
The plot.type
parameter specifies the type of karyoplot to create: the number
and positions of the data panels respect to the ideograms:
plot.type=1
Horizontal ideograms with a single data panel above them
plot.type=2
Horizontal ideograms with two data panels, one above and one below them
plot.type=3
Horizontal ideograms with all chromosomes in a single line with two data panels, one above and one below them
plot.type=4
Horizontal ideograms with all chromosomes in a single line with one data panel above
plot.type=5
Horizontal ideograms with all chromosomes in a single line with one data panel below them
plot.type=6
Horizontal ideograms with NO data panels. Only plotting in the ideograms is possible.
plot.type=7
Horizontal ideograms with all chromosomes in a single line with NO data panels. Only plotting in the ideograms is possible.
There's more information at the https://bernatgel.github.io/karyoploter_tutorial/karyoploteR tutorial.
The KaryoPlot
object needed by the plotting functions.
getDefaultPlotParams
, kpPoints
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
set.seed(1000)
rand.data <- createRandomRegions(genome="hg19", nregions=10000, length.mean=1,
length.sd=0, mask=NA, non.overlapping=TRUE)
mcols(rand.data) <- data.frame(y=rnorm(n=10000, mean = 0.5, sd=0.1))
#The simplest way, with all default parameters
kp <- plotKaryotype()
kpPoints(kp, rand.data, pch=".")
#Or we can plot only a few chromosomes, with 2 data panels
kp <- plotKaryotype(chromosomes = c("chr1", "chr2"), plot.type = 2)
kpDataBackground(kp, data.panel = 1, color = "lightgreen")
kpDataBackground(kp, data.panel = 2, color = "lightblue")
kpPoints(kp, rand.data, pch=".", data.panel = 1)
kpPoints(kp, rand.data, pch=".", data.panel = 2)
#Or we can use a different organism,
kp <- plotKaryotype(genome = "mm10")
kp <- plotKaryotype(genome = "dm6")
# Or we can change the plotting parameters. In this case, to create a smaller ideogram
# and smaller data panel below it
plot.params <- getDefaultPlotParams(plot.type=2)
plot.params$ideogramheight <- 5
plot.params$data2height <- 50
kp <- plotKaryotype(chromosomes = c("chr1", "chr2"), plot.type = 2, plot.params = plot.params)
kpDataBackground(kp, data.panel = 1, color = "lightgreen")
kpDataBackground(kp, data.panel = 2, color = "lightblue")
kpPoints(kp, rand.data, pch=".", data.panel = 1)
kpPoints(kp, rand.data, pch=".", data.panel = 2)
#Or we can remove the cytobands, passing an empty GRanges object
kp <- plotKaryotype(cytobands = GRanges())
#Or remove the chromosome labels
kp <- plotKaryotype(labels.plotter = NULL)
kpPoints(kp, rand.data, pch=".")
#In addition, it's possible to use maggrittr piping to chain the plotting calls
library(magrittr)
kp <- plotKaryotype() %>%
kpDataBackground(color = "lightgreen") %>%
kpPoints(rand.data, pch=".")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.