Nothing
addBatchMeans<-function(metab.col, batch.col, in.data, sample.type.name, analytical.type.name, color.col=NULL){
###############################################################################################
#This function takes a data frame of metabolite abundances and batch information,
#calculates mean metabolite abundance per batch, and appends the means to the
#bottom of the input data.
#
#Arguments:
#
# metab.col: A character value indicating the name of the variable in the input data set
# that corresponds to metabolite abundance.
#
# batch.col: A character value indicating the name of the variable in the input data set
# corresponding to batch.
#
# in.data: A data frame containing the variables specified in metab.col, batch.col, and color.col
#
# sample.type.name: A character value indicating the type of sample: "Quality Control" or "Experimental"
#
# analytical.type.name: A character value indicating whether the data have been normalized. Either
# "Before Normalization" or "After Normalization".
#
# color.col: A character value indicating the name of the variable in the input data set
# corresponding to a grouping variable (for instance mom vs. baby samples).
#
#Returns:
# A data frame of metabolite abundances, with batch specific means appended to the end.
######################################################################################################
#grab target columns
in.data<-as.data.frame(in.data)
in.data$sample.type<-sample.type.name
in.data$analytical.type<-analytical.type.name
target.cols<-c(metab.col, batch.col, 'sample.type', 'analytical.type', color.col, 'outlier')
data.target<-in.data[ , target.cols]
data.target$point.type<-"Observed Data"
colnames(data.target)[1]<-"metabolite.abundance"
#get rid of infinite rows
any.non.inf.non.outlying.data<-data.target[!is.infinite(data.target$metabolite.abundance) & !data.target$outlier, ]
if (nrow(any.non.inf.non.outlying.data)>0){
#to get means more easily, set infinite values to NA
non.inf.data<-data.target
non.inf.data[is.infinite(non.inf.data$metabolite.abundance), 'metabolite.abundance']<-NA
#also set outliers to NA
non.inf.data[non.inf.data$outlier, 'metabolite.abundance']<-NA
#get batch specific means
mean.annotation<-ddply(non.inf.data, as.quoted(c(batch.col, color.col)), summarize, metabolite.abundance=mean(substitute(metabolite.abundance),na.rm=T))
mean.annotation$sample.type<-sample.type.name
mean.annotation$analytical.type<-analytical.type.name
mean.annotation$point.type<-"Batch Specific Mean"
mean.annotation$outlier<-FALSE
#merge into a single df
target.data.cols<-colnames(data.target)
final.data<-rbind(data.target, mean.annotation[ , target.data.cols])
return(final.data)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.