Description Usage Arguments Details Value Author(s) References Examples
Performs a meta-analysis by fitting a hierarchical Bayes linear model, allowing for hierarchical dependence.
1 2 3 4 |
theta |
A vector of effect size estimates from multiple studies. |
V |
The variance/covariance matrix for |
X |
A matrix of covariates for |
M |
(optional) Used when |
dep.groups |
(optional) Used when |
meta.name |
(optional) A name field for bookkeeping. This can be any character string. |
center.X |
(optional) A logical value specifying whether or not to center the columns of |
delta.split |
(optional) A logical value specifying whether or not to account for hierarchical dependence (i.e., perform delta-splitting). If |
n |
(optional) An even integer telling how many steps to use when doing the numerical integration over tau, the square root of the between-study hierarchical variance. The integration is done on the log-logistic prior, split into the 4 quartiles. This number n specifies how many steps to take within each quartile. |
m |
(optional) An even integer telling how many steps to use when doing the numerical integration over varsigma (given tau), the between-study hierarchical covariance. This is only used when |
two.sided |
(optional) A logical value to determine whether to return the 2-sided p-values or default [one-sided positive] posterior probabilities for the parameter estimates. |
Takes a vector of effect size estimates, a variance/covariance matrix, and a covariate matrix, and fits a hierarchical Bayes linear model. If delta.split=TRUE
, then it performs delta-splitting to account for hierarchical dependence among studies. The main parameters (beta) are given normal priors, the square root of the hierarchical variance (tau) is given a log-logistic prior, and the hierarchical covariance (varsigma) is given a uniform prior; see the Stevens and Taylor reference for details.
When a meta-analysis is to be performed for gene expression data (on a per-gene basis), the metahdep()
function calls this metahdep.HBLM
function for each gene separately.
A list, with the following named components:
beta.hats |
A vector of model estimates for the covariates given by |
cov.matrix |
The variance/covariance matrix for the |
beta.hat.p.values |
The p-value(s) for the |
tau.hat |
The posterior mean for tau (not tau-square). An estimate for tau-square is E(square(tau) [given data]) = tau.var + square(tau.hat) |
tau.var |
The posterior variance for tau (not tau-square). |
varsigma.hat |
The posterior mean for varsigma. |
varsigma.var |
The posterior variance for varsigma. |
tau.varsigma.cov |
The posterior covariance for tau and varsigma. |
name |
An optional name field |
John R. Stevens, Gabriel Nicholas
DuMouchel W. H. and Harris J. H. (1983), Bayes methods for combining the results of cancer studies in humans and other species, Journal of the American Statistical Association, 78(382), 293-308.
DuMouchel W.H. and Normand S.-L. (2000), Computer-modeling and graphical strategies for meta-analysis, in D. K. Stangl and D. A. Berry (Eds.), Meta-analysis in medicine and health policy, pp. 127-178. New York: Marcel Dekker.
Stevens J.R. and Doerge R.W. (2005), A Bayesian and Covariate Approach to Combine Results from Multiple Microarray Studies, Proceedings of Conference on Applied Statistics in Agriculture, pp. 133-147.
Stevens J.R. and Nicholas G. (2009), metahdep: Meta-analysis of hierarchically dependent gene expression studies, Bioinformatics, 25(19):2619-2620.
Stevens J.R. and Taylor A.M. (2009), Hierarchical Dependence in Meta-Analysis, Journal of Educational and Behavioral Statistics, 34(1):46-73.
See also the metahdep package vignette.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ###
### Example 1: gene expression data
### - this uses one gene from the HGU.prep.list object
# load data and extract components for meta-analysis (for one gene)
data(HGU.prep.list)
gene.data <- HGU.prep.list[[7]]
theta <- gene.data@theta
V <- gene.data@V
X <- gene.data@X
M <- gene.data@M
dep.grps <- list(c(1:2),c(4:6))
gene.name <- gene.data@gene
# fit a regular HBLM (no hierarchical dependence)
results <- metahdep.HBLM(theta, V, X, meta.name=gene.name,
center.X=TRUE, two.sided=TRUE)
results
# fit hierarchical dependence model (with delta-splitting),
# using two different methods for specifying the dependence structure
results.dsplitM <- metahdep.HBLM(theta, V, X, M, delta.split=TRUE,
meta.name=gene.name, center.X=TRUE, two.sided=TRUE)
results.dsplitM
results.dsplitd <- metahdep.HBLM(theta, V, X, dep.groups=dep.grps,
delta.split=TRUE, meta.name=gene.name, center.X=TRUE, two.sided=TRUE)
results.dsplitd
###
### Example 2: glossing data
### - this produces part of Table 5 in the Stevens and Taylor JEBS paper.
data(gloss)
dep.groups <- list(c(2,3,4,5),c(10,11,12))
HBLM.ds <- metahdep.HBLM(gloss.theta, gloss.V, gloss.X, center.X=TRUE,
two.sided=TRUE, delta.split=TRUE, dep.groups=dep.groups, n=20, m=20)
round(cbind(HBLM.ds$beta.hats, HBLM.ds$beta.hat.p.values),4)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.