Description Usage Arguments Details Value Author(s) References Examples
Performs a random effects linear model meta-analysis, allowing for hierarchical dependence. It returns a list containing the results.
1 2 3 | metahdep.REMA(theta, V, X, M = NULL, dep.groups = NULL,
meta.name = "meta-analysis", delta.split = FALSE,
center.X = FALSE)
|
theta |
A vector of effect size estimates from multiple studies. |
V |
The variance/covariance matrix for |
X |
A matrix of covariates for |
M |
(optional) Used when |
dep.groups |
(optional) Used when |
meta.name |
(optional) A name field for bookkeeping. This can be any character string. |
delta.split |
(optional) A logical value specifying whether or not to account for hierarchical dependence (i.e., perform delta-splitting). If |
center.X |
(optional) A logical value specifying whether or not to center the columns of |
Takes a vector of effect size estimates, a variance/covariance matrix, and a covariate matrix, and fits a random effects linear model meta-analysis, allowing for hierarchical dependence.
If delta.split=TRUE
, then it performs delta-splitting to account for hierarchical dependence among studies.
When a meta-analysis is to be performed for gene expression data (on a per-gene basis), the metahdep()
function calls this metahdep.REMA()
function for each gene separately.
A list, with the following named components:
beta.hats |
A vector of model estimates for the covariates given by |
cov.matrix |
The variance/covariance matrix for the |
beta.hat.p.values |
The [two-sided] p-value(s) for the |
tau2.hat |
The estimated between-study hierarchical variance tau-square, using the method of moments approach of DerSimonian and Laird. |
varsigma.hat |
(Only estimated when |
Q |
The statistic used to test for model homogeneity / model mis-specification |
Q.p.value |
The p-value for |
name |
An optional name field |
John R. Stevens, Gabriel Nicholas
DerSimonian R. and Laird N. (1986), Meta-analysis in clinical trials, Controlled Clinical Trials, 7: 177-188.
Hedges L. V. and Olkin I (1985), Statistical methods for meta-analysis, San Diego, CA: Academic Press.
Stevens J.R. and Doerge R.W. (2005), Combining Affymetrix Microarray Results, BMC Bioinformatics, 6:57.
Stevens J.R. and Taylor A.M. (2009), Hierarchical Dependence in Meta-Analysis, Journal of Educational and Behavioral Statistics, 34(1):46-73.
See also the metahdep package vignette.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ###
### Example 1: gene expression data
### - this uses one gene from the HGU.prep.list object
# load data and extract components for meta-analysis (for one gene)
data(HGU.prep.list)
gene.data <- HGU.prep.list[[7]]
theta <- gene.data@theta
V <- gene.data@V
X <- gene.data@X
M <- gene.data@M
dep.grps <- list(c(1:2),c(4:6))
gene.name <- gene.data@gene
# fit a regular REMA (no hierarchical dependence)
results <- metahdep.REMA(theta, V, X, meta.name=gene.name)
results
# fit hierarchical dependence model (with delta-splitting),
# using two different methods for specifying the dependence structure
results.dsplitM <- metahdep.REMA(theta, V, X, M, delta.split=TRUE,
meta.name=gene.name, center.X=TRUE)
results.dsplitM
results.dsplitd <- metahdep.REMA(theta, V, X, dep.groups=dep.grps,
delta.split=TRUE, meta.name=gene.name, center.X=TRUE)
results.dsplitd
###
### Example 2: glossing data
### - this produces part of Table 6 in the Stevens and Taylor JEBS paper.
data(gloss)
dep.groups <- list(c(2,3,4,5),c(10,11,12))
REMA.ds <- metahdep.REMA(gloss.theta, gloss.V, gloss.X, center.X=TRUE,
delta.split=TRUE, dep.groups=dep.groups)
round(cbind(t(REMA.ds$beta.hats), sqrt(diag(REMA.ds$cov.matrix)),
t(REMA.ds$beta.hat.p.values)),4)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.