Nothing
# extract posterior probability
.extractPostProb <- function( postProb, peakRegion, summaryStat="aveLogP", parallel, nCore ) {
# split by chromosome for faster computation
peakRegionChr <- split( peakRegion, peakRegion[,1] )
locChr <- split( 1:nrow(peakRegion), peakRegion[,1] )
postProbChr <- split( postProb, postProb[,1] )
chrPeakRegion <- unique(peakRegion[,1])
chrCommon <- intersect( chrPeakRegion, unique(postProb[,1]) )
binsize <- postProb[2,2] - postProb[1,2]
# calculate summary statistics of posterior probabilities
if ( parallel == TRUE ) {
out <- parallel::mclapply( chrCommon, function(chrID) {
peakSel <- peakRegionChr[[ chrID ]]
ppSel <- postProbChr[[ chrID ]]
# extract post prob for peak regions
rangePeak <- IRanges( start=peakSel[,2], end=peakSel[,3] )
rangePP <- IRanges( start=ppSel[,2], end=ppSel[,2]+binsize-1 )
# obtain pp for each peak region
mm <- as.matrix(findOverlaps( rangePeak, rangePP ))
mmlist <- split( mm[,2], mm[,1] )
ppList <- lapply( mmlist, function(x) ppSel[x,3] )
# calculate summary statistics of pp
ppVecOrg <- switch( summaryStat,
aveLogP = sapply( ppList, function(x) mean(-log10(x)) ),
medianLogP = sapply( ppList, function(x) median(-log10(x)) ),
sumLogP = sapply( ppList, function(x) sum(-log10(x)) ),
logMinP = sapply( ppList, function(x) max(-log10(x)) ),
logAveP = sapply( ppList, function(x) -log10(mean(x)) ),
logMedianP = sapply( ppList, function(x) -log10(median(x)) )
)
# final version to return
ppVec <- rep( NA, nrow(peakSel) )
ppVec[ match( as.numeric(names(mmlist)), c(1:nrow(peakSel)) ) ] <- ppVecOrg
return(ppVec)
}, mc.cores=nCore )
} else {
out <- lapply( chrCommon, function(chrID) {
peakSel <- peakRegionChr[[ chrID ]]
ppSel <- postProbChr[[ chrID ]]
# extract post prob for peak regions
rangePeak <- IRanges( start=peakSel[,2], end=peakSel[,3] )
rangePP <- IRanges( start=ppSel[,2], end=ppSel[,2]+binsize-1 )
# obtain pp for each peak region
mm <- as.matrix(findOverlaps( rangePeak, rangePP ))
mmlist <- split( mm[,2], mm[,1] )
ppList <- lapply( mmlist, function(x) ppSel[x,3] )
# calculate summary statistics of pp
ppVecOrg <- switch( summaryStat,
aveLogP = sapply( ppList, function(x) mean(-log10(x)) ),
medianLogP = sapply( ppList, function(x) median(-log10(x)) ),
sumLogP = sapply( ppList, function(x) sum(-log10(x)) ),
logMinP = sapply( ppList, function(x) max(-log10(x)) ),
logAveP = sapply( ppList, function(x) -log10(mean(x)) ),
logMedianP = sapply( ppList, function(x) -log10(median(x)) )
)
# final version to return
ppVec <- rep( NA, nrow(peakSel) )
ppVec[ match( as.numeric(names(mmlist)), c(1:nrow(peakSel)) ) ] <- ppVecOrg
return(ppVec)
} )
}
# put the calculated PP back to the original location
ppFinal <- data.frame( peakRegion, rep( NA, nrow(peakRegion) ) )
for ( chrID in chrCommon ) {
ppFinal[ locChr[[chrID]], ncol(ppFinal) ] <- out[[ which( chrCommon == chrID ) ]]
}
colnames(ppFinal)[ ncol(ppFinal) ] <- summaryStat
return(ppFinal)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.