Description Usage Arguments Details Value Examples
Plots various measures of predictor performance for binary classifiers
1 |
resList |
(list) list of prediction results. If provided, the method will ignore inDir |
inFiles |
(char) path to predictionResults.txt files. A vector, each with absolute paths to predictionResults.txt |
predClasses |
(char) vector of class names. |
plotSEM |
(logical) metric for error bars. If set to TRUE, plots SEM; else plots SD. |
Plots individual and average ROC/PR curves. mean+/-SEM performance for a predictor run using nested cross-validation or a similar repeated design. predictionResults.txt contains a (data.frame)
(list) each key corresponds to an input file in inDir. Value is a list with: 1) stats: 'stats' component of perfCalc 2) rocCurve: ROCR performance object for ROC curve 3) prCurve: ROCR performance object for PR curve 4) auroc: Area under ROC curve 5) aupr: Area under PR curve 6) accuracy: Accuracy
Side effect of plotting in a 2x2 format: 1) mean+/-SEM or (mean+/-SD) AUROC 2) mean+/-SEM or (mean+/-SD) AUPR 3) ROC curve for all runs plus average 4) PR curve for all runs plus average
1 2 3 4 5 6 7 8 | inDir <- system.file("extdata","example_output",package='netDx')
inFiles <- paste(rep(inDir,3), sprintf("rng%i",seq_len(3)),"predictionResults.txt",
sep=getFileSep())
resList <- list()
for (k in seq_len(length(inFiles))) {
resList[[k]] <- read.delim(inFiles[k],sep="\t",header=TRUE,as.is=TRUE)
}
plotPerf(resList, predClasses = c('LumA','notLumA'))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.