Description Usage Arguments Value Examples
Parallelisation via multicore (via 'parallel'-package). So *nix only atm.
1 2 3 4 |
datan |
Data frame were rows correspond to samples and columns to features. |
stepno |
Integer amount of boosting steps |
until |
Stop at index/column (if 0: iterate through all columns) |
progress |
Integer. If > 0, print progress after every X steps (mind: parallel!) |
filter_method |
The following filtering methods are supported: "boosting" (non-zero coefficients in likelihood based boosting), "skip" (no filter), "kendall" (stats::cor.test), "spearman" (stats::cor.test), "pearson" (stats::cor.test) |
cores |
Integer. Amount of CPU cores used (<=1 : sequential) |
mode |
Integer. Mode (0: x86, 1: FMA, 2: AVX). Features are only available if compiled accordingly and available on the hardware. |
verbose |
Additional diagnostic messages. |
matrix n times 2 matrix with the indicies of the n unique entrees of the filter
1 2 3 4 5 6 7 8 | data('tcga_aml_meth_rna_chr18', package='netboost')
cores <- as.integer(getOption('mc.cores', 2))
datan <- as.data.frame(scale(tcga_aml_meth_rna_chr18, center=TRUE,
scale=TRUE))
filter <- nb_filter(datan=datan, stepno=20L, until=0L, progress=1000L,
cores=cores,mode=2L)
head(filter)
nrow(filter)/(ncol(datan)*(ncol(datan)-1)/2) # proportion of potential undirected edges
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.