Description Usage Arguments Value Author(s) Examples
View source: R/machinelearning-functions-plsda.R
Classification using the partial least square distcriminant analysis algorithm.
1 2 | plsdaClassification(object, assessRes, scores = c("prediction", "all",
"none"), ncomp, fcol = "markers", ...)
|
object |
An instance of class |
assessRes |
An instance of class
|
scores |
One of |
ncomp |
If |
fcol |
The feature meta-data containing marker definitions.
Default is |
... |
Additional parameters passed to |
An instance of class "MSnSet"
with
plsda
and plsda.scores
feature variables storing
the classification results and scores respectively.
Laurent Gatto
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## not running this one for time considerations
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations
params <- plsdaOptimisation(dunkley2006, ncomp = c(3, 10), times = 2)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- plsdaClassification(dunkley2006, params)
getPredictions(res, fcol = "plsda")
getPredictions(res, fcol = "plsda", t = 0.9)
plot2D(res, fcol = "plsda")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.