Nothing
#' Tabulate, adjust, and sort pathway \eqn{p}-values
#'
#' @description Adjust the pathway \eqn{p}-values, then return a data frame of
#' the relevant pathway information, sorted by adjusted significance.
#'
#' @param pVals_vec A named vector of permutation \eqn{p}-values returned by the
#' \code{\link{PermTestSurv}}, \code{\link{PermTestReg}}, or
#' \code{\link{PermTestCateg}} functions when the analysis performed was
#' AES-PCA. Otherwise, when the analysis was performed with Supervised PCA, a
#' named vector of \eqn{p}-values from the \code{\link{GumbelMixpValues}}
#' function.
#' @param genesets_ls A list of known gene pathways, trimmed to match the given
#' assay data by the \code{\link{IntersectOmicsPwyCollct}} function. This
#' pathway list must contain:
#' \itemize{
#' \item{\code{pathways} : }{A named list of character vectors where each
#' vector contains the names of the genes in that specific pathway.}
#' \item{\code{TERMS} : }{A character vector the same length as
#' \code{pathways} containing the full pathway descriptions.}
#' \item{\code{n_tested} : }{An integer vector the same length as
#' \code{pathways} containing the number of genes present in the pathway
#' after trimming. Pathways list trimming is done in the
#' \code{\link{IntersectOmicsPwyCollct}} function.}
#' }
#' @param adjust Should you adjust the \eqn{p}-values for multiple comparisons?
#' Defaults to TRUE.
#' @param proc_vec Character vector of procedures. The returned data frame will
#' be sorted in ascending order by the first procedure in this vector, with
#' ties broken by the unadjusted \eqn{p}-value. If only one procedure is
#' selected, then it is necessarily the first procedure. Defaults to
#' \code{"BH"} (Benjamini and Hochberg, 1995).
#' @param ... Additional arguments to pass to the \code{\link{ControlFDR}}
#' function.
#'
#' @return A data frame with columns
#' \itemize{
#' \item{\code{pathways} : }{The names of the pathways in the \code{Omics*}}
#' object (stored in \code{object@@trimPathwayCollection$pathways}).
#' \item{\code{n_tested} : }{The number of genes in each pathway after being
#' trimmed to match the assay. Given in the \code{n_tested} element of the
#' trimmed pathway collection.}
#' \item{\code{terms} : }{The pathway title, as stored in the
#' \code{object@@trimPathwayCollection$TERMS} object.}
#' \item{\code{description} : }{The pathway description, if it is stored in
#' the \code{object@@trimPathwayCollection$description} object.}
#' \item{\code{rawp} : }{The unadjusted \eqn{p}-values of each pathway.}
#' \item{\code{...} : }{Additional columns as specified through the
#' \code{adjustment} argument.}
#' }
#'
#' The data frame will be sorted in ascending order by the method specified
#' first in the \code{adjustment} argument. If \code{adjustpValues = FALSE},
#' then the data frame will be sorted by the raw \eqn{p}-values. If you have
#' the suggested \code{tidyverse} package suite loaded, then this data frame
#' will print as a \code{\link[tibble]{tibble}}. Otherwise, it will stay a
#' simple data frame.
#'
#' @details This is a wrapper function for the \code{\link{ControlFDR}}
#' function. The number of \eqn{p}-values passed to the \code{pVals_vec}
#' argument \emph{must} equal the number of pathways and set size values in
#' the \code{genesets_ls} argument. If you trimmed a pathway from \eqn{p}-
#' value calculation, then pad this missing value with an \code{NA}.
#'
#' @keywords internal
#'
#'
#' @examples
#' # DO NOT CALL THIS FUNCTION DIRECTLY.
#' # Call this function through AESPCA_pVals() or SuperPCA_pVals() instead.
#'
#' \dontrun{
#' ### Load the Example Data ###
#' data("colonSurv_df")
#' data("colon_pathwayCollection")
#'
#' ### Create an OmicsSurv Object ###
#' colon_Omics <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "surv"
#' )
#'
#' ### Extract Pathway PCs and Loadings ###
#' colonPCs_ls <- ExtractAESPCs(
#' object = colon_Omics,
#' parallel = TRUE,
#' numCores = 2
#' )
#'
#' ### Pathway p-Values ###
#' pVals <- PermTestSurv(
#' OmicsSurv = colon_Omics,
#' pathwayPCs_ls = colonPCs_ls$PCs,
#' parallel = TRUE,
#' numCores = 2
#' )
#'
#' ### Create Table of p-Values ###
#' trimmed_PC <- getTrimPathwayCollection(colon_Omics)
#' TabulatepValues(
#' pVals_vec = pVals,
#' genesets_ls = trimmed_PC
#' )
#' }
#'
TabulatepValues <- function(pVals_vec,
genesets_ls,
adjust = TRUE,
proc_vec = c("BH",
"Bonferroni",
"Holm",
"Hochberg",
"SidakSS",
"SidakSD",
"BY",
"ABH",
"TSBH"),
...){
# browser()
# # If we remove a pathway, then the pValue for that pathway should
# # exist, and it should be NA. Right now, if we remove 10 pathways,
# # then the pVals_vec will be 10 shorter. We need these vectors to
# # be the same size.
# pValsFull_vec <- rep(NA, length(genesets_ls$TERMS))
# names(pValsFull_vec) <- names(genesets_ls$TERMS)
# pValsFull_vec[names(pVals_vec)] <- pVals_vec
# # We are passing in the trimmed pathway collection anyway, so this is now
# # pointless.
if(is.null(genesets_ls$description)){
pVals_df <- data.frame(
pathways = names(genesets_ls$TERMS),
n_tested = genesets_ls$n_tested,
terms = genesets_ls$TERMS,
rawp = unname(pVals_vec),
stringsAsFactors = FALSE
)
} else {
pVals_df <- data.frame(
pathways = names(genesets_ls$TERMS),
n_tested = genesets_ls$n_tested,
terms = genesets_ls$TERMS,
description = genesets_ls$description,
rawp = unname(pVals_vec),
stringsAsFactors = FALSE
)
}
rownames(pVals_df) <- NULL
if(adjust){
proc_vec <- match.arg(proc_vec, several.ok = TRUE)
proc_vec <- unique(proc_vec)
adjusted_df <- ControlFDR(
rawp = pVals_df$rawp,
proc = proc_vec,
na.rm = anyNA(pVals_df$rawp),
...
)
TSBHplace_idx <- which(proc_vec == "TSBH")
if(length(TSBHplace_idx) == 0){
# If the "TSBH" method isn't included
orderedNames <- proc_vec
} else {
# if the "TSBH" procedure is included
TSBHnames_idx <- grep("TSBH", colnames(adjusted_df))
TSBHnames <- colnames(adjusted_df)[TSBHnames_idx]
nProcs <- length(proc_vec)
if(TSBHplace_idx == 1){
# "TSBH" is the first procedure
orderedNames <- c(TSBHnames, proc_vec[-1])
} else if(TSBHplace_idx == nProcs) {
# "TSBH" is the last procedure
orderedNames <- c(proc_vec[-nProcs], TSBHnames)
} else {
# "TSBH" is some procedure in the middle of the proc list
orderedNames <- c(
proc_vec[seq_len(TSBHplace_idx - 1)],
TSBHnames,
proc_vec[(TSBHplace_idx + 1):nProcs]
)
}
}
# browser()
adjusted_df <- adjusted_df[, orderedNames, drop = FALSE]
fwerNames <- c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD")
newAdjNames <- vapply(
orderedNames,
function(i){
ifelse(
i %in% fwerNames,
paste0("FWER_", i),
paste0("FDR_", i)
)
},
FUN.VALUE = character(1)
)
colnames(adjusted_df) <- newAdjNames
pVals_df <- cbind(pVals_df, adjusted_df)
out_df <- pVals_df[order(pVals_df[, newAdjNames[1]], pVals_df$rawp), ]
} else {
out_df <- pVals_df[order(pVals_df$rawp), ]
}
class(out_df) <- c("tbl_df", "tbl", "data.frame")
out_df
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.