Nothing
#' Calculate Test Data PCs from Training-Data Estimated Loadings
#'
#' @description Given a list of loading vectors from a training data set,
#' calculate the PCs of the test data set.
#'
#' @param design_df A test data frame with rows as samples and named features
#' as columns
#' @param loadings_ls A list of \eqn{p \times d} loading vectors or matrices as
#' returned by either the \code{\link{SuperPCA_pVals}},
#' \code{\link{AESPCA_pVals}}, or \code{\link{ExtractAESPCs}} functions.
#' These lists of loadings will have feature names as their row names. Such
#' feature names must match a subset of the column names of \code{design_df}
#' exactly, as pathway-specific test-data subsetting is performed by column
#' name.
#' @param sampleID Are the sample IDs in the first column of \code{design_df}
#' or in accessible by \code{rownames(design_df)}? Defaults to the first
#' column. If your data does not have sample IDs for some reason, set this
#' to \code{rowNames}.
#'
#' @return A data frame with the PCs from each pathway concatenated by column.
#' If you have the \code{tidyverse} loaded, this object will display as a
#' \code{\link[tibble]{tibble}}.
#'
#' @details This function takes in a list of loadings and a training-centered
#' test data set, applies over the list of loadings, subsets the columns of
#' the test data by the row names of the loading vectors, right-multiplies
#' the test-data subset matrix by the loading vector / matrix, and returns a
#' data frame of the test-data PCs for each loading vector.
#'
#' @export
#'
#' @examples
#'
#' ### Load the Data ###
#' data("colonSurv_df")
#' data("colon_pathwayCollection")
#'
#' ### Create -Omics Container ###
#' colon_Omics <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "survival"
#' )
#'
#' ### Extract AESPCs ###
#' colonSurv_aespc <- AESPCA_pVals(
#' object = colon_Omics,
#' numReps = 0,
#' parallel = TRUE,
#' numCores = 2,
#' adjustpValues = TRUE,
#' adjustment = c("Hoch", "SidakSD")
#' )
#'
#' ### Project Data onto Pathway First PCs ###
#' LoadOntoPCs(
#' design_df = colonSurv_df,
#' loadings_ls = colonSurv_aespc$loadings_ls
#' )
#'
#'
LoadOntoPCs <- function(design_df, loadings_ls,
sampleID = c("firstCol", "rowNames")){
# browser()
sampleID <- match.arg(sampleID)
### PCs List ###
PCs_ls <- lapply(loadings_ls, function(x){
tryCatch(
{
genes <- rownames(x)
testSubset <- as.matrix(design_df[genes])
testSubset %*% x
},
error = function(e) NULL
)
})
### Check for Missing PCs ###
error_idx <- vapply(PCs_ls, is.null, logical(1))
if(any(error_idx)){
message(sprintf("PC extraction failed for %i pathway(s). These pathway(s) are:",
sum(error_idx)))
print(which(error_idx))
out_mat <- do.call(cbind, PCs_ls[!error_idx])
names_char <- names(PCs_ls)[!error_idx]
} else {
out_mat <- do.call(cbind, PCs_ls)
names_char <- names(PCs_ls)
}
### Preserve Column Names ###
out_df <- as.data.frame(out_mat)
colnames(out_df) <- names_char
### Sample IDs ###
if(sampleID == "firstCol"){
out_df <- data.frame(
SampleID = design_df[, 1, drop = TRUE],
out_df,
stringsAsFactors = FALSE
)
} else {
rownames(out_df) <- rownames(design_df)
}
### Return ###
class(out_df) <- c("tbl_df", "tbl", "data.frame")
out_df
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.