Description Slots Superclassses Subclasses Function Author(s) References See Also Examples
This is a concrete MolecularPermutationClassifier based on Perou et al. (2000 & 2010) PAM50 molecular signature, using genefu package implementation (Haibe-Kains et al. 2014).
parameters
named list with at least the following fields:
integer with number of permutations. Default: 1e4L
character with significant value used. Default value is "fdr".
numeric with p-value or fdr cutoff used, i.e., variable<pCutoff. Default: 0.01
should null distribution simulation values be kept?. Default: FALSE
PAM50 additional numeric parameter with the correlation difference between classes cutoff used, i.e., |ρ(profile,class_A)-ρ(profile,classB)|>corCutoff
exprs
matrix with gene exprs profile, where genes are in rows and subjects as columns, a.k.a., M matrix.
annotation
data.frame with individual annotations (genes, etc). Minimal compulsory fields are:
same characters as in row.names(M).
integer with NCBI Entrez Data Base.
character with gene mnemonic, a.k.a. gene symbol.
targets
data.frame with additional subject data (optional).
classification
named list with at least the following fields:
factor with PAM50 subtype of each sample.
matrix with the subtype probability of each subtype per sample, as in genefu library.
matrix with the observed correlation of each subtype per sample.
permutation
named list with at least the following fields:
Only if keep==TRUE is a list of the five subtypes containing a matrix with the permuted null distribution correlations.
matrix with the subject's p-values of the permutation test per subject.
matrix with the corresponding adjusted p-values.
data.frame where each subject has the reported "PAM50" subtype, the "Permuted" test result i.e. "Assigned", "Not Assigned" or "Ambiguous"; "Classes" whether is a single PAM50 subtype or more than one if Ambiguous case; "Class" if it is needed to assign just one i.e., a single PAM50 subtype or Not Assigned.
Direct descendant from MolecularPermutationClassifier-class
.
None declared.
Redefinition from MolecularPermutationClassifier: filtrate, classify, permutate, subjectReporta and databaseReport.
Cristobal Fresno cfresno@bdmg.com.ar, German A. Gonzalez ggonzalez@bdmg.com.ar, Andrea S. Llera allera@leloir.org.ar and Elmer Andres Fernandez efernandez@bdmg.com.ar
Haibe-Kains B, Schroeder M, Bontempi G, Sotiriou C and Quackenbush J, 2014, genefu: Relevant Functions for Gene Expression Analysis, Especially in Breast Cancer. R package version 1.16.0, www.pmgenomics.ca/bhklab/
Perou CM, Sorlie T, Eisen MB, et al., 2000, Molecular portraits of human breast tumors. Nature 406:747-752.
Perou CM, Parker JS, Prat A, Ellis MJ, Bernard PB., 2010, Clinical implementation of the intrinsic subtypes of breast cancer, The Lancet Oncology 11(8):718-719
Other MolecularPermutationClassifier PAM50: filtrate
,
loadBCDataset
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | ##Example 1: Create a PAM50 object -----------------------------------------
##1) Just an empty object
object<-PAM50()
object
##2) Using Breast Cancer NKI database, if available.
if(requireNamespace("breastCancerNKI")){
object<-loadBCDataset(Class=PAM50, libname="nki", verbose=TRUE)
object
##Now we can inspect the object
head(exprs(object)) ##The gene expression
head(annotation(object)) ##The available annotation
head(targets(object)) ##The clinical data present in the package
}
##Example 2: Build a PAM50 object with user data -------------------------
##Option 1: using PAM50 constructor. The user will only need:
##a) The M gene expression object, i. e., gene in rows and sample in columns
##b) The annotation data.frame which must include the compulsory fields
## "probe", "NCBI.gene.symbol" and "EntrezGene.ID"
M<-pam50$centroids
genes<-pam50$centroids.map
names(genes)<-c("probe", "NCBI.gene.symbol", "EntrezGene.ID")
object<-PAM50(exprs=M, annotation=genes)
object
##Option 2: Two ways to build it from a MAList (as or as.PAM50)-------------
##Let's use PAM50 classifier's centroids toy example, i. e., the five subject
##subtypes, which must correctly classify all the subject.
M<-pam50$centroids
genes<-pam50$centroids.map
names(genes)<-c("probe", "NCBI.gene.symbol", "EntrezGene.ID")
maux<-new("MAList", list(M=M, genes=genes))
##calling as function
object<-as(maux, "PAM50")
object
##same result with as.PAM50 function
object<-as.PAM50(maux)
object
##Example3: Work with PAM50 object: filtrate, classify and permutate--------
##1)Keep only annotated genes presentes in PAM50 centroids
object<-filtrate(object, verbose=TRUE)
##2)Get PAM50 subtypes without any normalization
object<-classify(object, std="none", verbose=TRUE)
##Now we can inspect the how the calssification went
head(classification(object))
##3)Obtain the permutation subtype
##Let's run a quick example with 100 permutations. It is recommended at
##least 10.000
object<-permutate(object, nPerm=100, pCutoff=0.01, corCutoff=0.1,
keep=TRUE, seed=1234567890, verbose=TRUE)
object
##Now we can inspect the how the permutation went
head(permutation(object))
##Which parameters were used?
parameters(object)
##Example 4: Obtain summary statistics and reports--------------------------
##1) Let's check if we have a diagonal contigency matrix, i. e., no mistake
##is made in subtype assesment.
summary(object)
##2)Let's take a look at the how the patient genes behave according
## to PAM50
subjectReport(object, subject=1)
##3)Just get a pdf with all the used subjects (PAM50 centroids in this
##example).
#databaseReport(object, fileName="PAM50.pdf", verbose=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.