Description Usage Arguments Details Value Examples
calc_prebs
calculates PREBS values for given set of BAM files.
1 2 3 |
bam_files |
A vector containing .bam files. |
probe_mapping_file |
A file containing probe mappings in the genome. |
cdf_name |
A name of CDF package to use in RMA algorithm. If cdf_name=NULL, the package name is inferred from the name of probe_mapping_file ("HGU133Plus2_Hs_ENSG_mapping.txt" -> "hgu133plus2hsensgcdf") |
cluster |
A cluster object created using "makeCluster" function from "parellel" package. If cluster=NULL, no parallelization is used. |
output_eset |
If set to TRUE, the output of |
paired_ended_reads |
Set it to TRUE if your data contains paired-ended reads. Otherwise, the two read mates will be treated as independent units. |
ignore_strand |
If set to TRUE, then the strand is ignored while counting read overlaps with probe regions. If you use strand-specific RNA-seq protocol, set to FALSE, otherwise set it to TRUE. |
sum.method |
Microarray summarization method to be used. Can be either |
calc_prebs
is the main function of prebs
package that implements the whole
pipeline. The function takes mapped reads in BAM format and probe sequence
mappings as an input.
calc_prebs
can run in two modes: rpa
and rma
. RMA is the classical
microarray summarization algorithm developed by R. A. Irizarry et al. (2003), while RPA is a newer algorithm that was developed by
L. Lahti et al. (2011). The default mode is rpa
. NOTE: before prebs
version 1.7.1 only RMA mode was available.
The output format depends on output_eset
option. If output_eset=TRUE
then
calc_prebs
returns ExpressionSet object (ExpressionSet object is defined in
affy
package). Otherwise, it returns a data frame containing PREBS values.
For running calc_prebs
with custom CDF, the custom CDF package has to be
downloaded and installed from Custom CDF website:
http://brainarray.mbni.med.umich.edu/CustomCDF
For running calc_prebs
with manufacturer's CDF, the manufacturer's CDF package
can be installed from Bioconductor, for example:
BiocManager::install("GenomicRanges");
BiocManager::install("hgu133plus2cdf")
For a detailed input specification, please refer to the prebs
vignette.
ExpressionSet object or a data frame containing PREBS values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | if (require(prebsdata)) {
# Get full paths to data files in \code{prebsdata} package
bam_file1 <- system.file(file.path("sample_bam_files", "input1.bam"), package="prebsdata")
bam_file2 <- system.file(file.path("sample_bam_files", "input2.bam"), package="prebsdata")
bam_files <- c(bam_file1, bam_file2)
custom_cdf_mapping1 <- system.file(file.path("custom-cdf", "HGU133Plus2_Hs_ENSG_mapping.txt"),
package="prebsdata")
custom_cdf_mapping2 <- system.file(file.path("custom-cdf", "HGU133A2_Hs_ENSG_mapping.txt"),
package="prebsdata")
manufacturer_cdf_mapping <- system.file(file.path("manufacturer-cdf", "HGU133Plus2_mapping.txt"),
package="prebsdata")
if (interactive()) {
# Run PREBS using custom CDF without parallelization ("rpa" mode)
prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1)
head(exprs(prebs_values))
# Run PREBS using custom CDF without parallelization ("rma" mode)
prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, sum.method="rma")
head(exprs(prebs_values))
# Run PREBS using custom CDF with parallelization
library(parallel)
N_CORES = 2
CLUSTER <- makeCluster(N_CORES)
prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, cluster=CLUSTER)
stopCluster(CLUSTER)
# Run PREBS using another custom CDF
prebs_values <- calc_prebs(bam_files, custom_cdf_mapping2)
# Run PREBS and return data frame instead of ExpressionSet object
prebs_values <- calc_prebs(bam_files, custom_cdf_mapping1, output_eset=FALSE)
head(prebs_values)
}
# Run PREBS using Manufacturer's CDF (outputs probe set expressions)
prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping)
head(exprs(prebs_values))
# Same as above, but state CDF package name explicitly
prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping, cdf_name="hgu133plus2cdf")
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.