Nothing
#' Plot of feature expression of single cells in bivariate hexagon cells.
#'
#' @param sce A \code{\link[SingleCellExperiment]{SingleCellExperiment}}
#' or \code{\link[Seurat]{Seurat-class}} object.
#' @param mod A string referring to the name of the modality used for plotting.
#' For RNA modality use "RNA". For other modalities use name of alternative
#' object for the \code{\link[SingleCellExperiment]{SingleCellExperiment}}
#' or the name of the assay for the \code{\link[Seurat]{Seurat-class}}
#' object.
#' @param type A string referring to the type of assay in the
#' \code{\link[SingleCellExperiment]{SingleCellExperiment}} object or the
#' data transformation in the \code{\link[Seurat]{Seurat-class}} object.
#' @param feature A string referring to the name of one feature.
#' @param action A strings pecifying how meta data of observations in
#' binned hexagon cells are to be summarized. Possible actions are
#' \code{prop_0}, \code{mode}, \code{mean} and \code{median} (see details).
#' @param title A string containing the title of the plot.
#' @param xlab A string containing the title of the x axis.
#' @param ylab A string containing the title of the y axis.
#' @param lower_cutoff For \code{mode}, \code{mean} and \code{median} actions,
#' remove expression values below this quantile. Expressed as decimal.
#' Default: 0
#' @param upper_cutoff For \code{mode}, \code{mean} and \code{median} actions,
#' remove expression values above this quantile. Expressed as decimal.
#' Default: 1
#'
#' @details This function plots the expression of any feature in the hexagon
#' cell representation calculated with \code{\link{make_hexbin}}. The chosen
#' gene expression is summarized by one of four actions \code{prop_0},
#' \code{mode}, \code{mean} and \code{median}:
#'
#' \describe{
#' \item{\code{prop_0}}{Returns the proportion of observations in the bin
#' greater than 0. The associated meta data column needs to be numeric.}
#' \item{\code{mode}}{Returns the mode of the observations in the bin. The
#' associated meta data column needs to be numeric.}
#' \item{\code{mean}}{Returns the mean of the observations in the bin. The
#' associated meta data column needs to be numeric.}
#' \item{\code{median}}{Returns the median of the observations in the bin.
#' The associated meta data column needs to be numeric.}
#' }
#'
#' To access the data that has been integrated in the
#' \code{\link[Seurat]{Seurat-class}} object specifiy \code{mod="integrated"}.
#'
#' @return A \code{\link{ggplot2}{ggplot}} object.
#' @import Seurat
#' @import SingleCellExperiment
#' @import ggplot2
#' @importFrom dplyr as_tibble
#' @importFrom methods slotNames
#' @importFrom stats quantile
#' @export
#'
#' @examples
#' # For Seurat object
#' library(Seurat)
#' data("pbmc_small")
#' pbmc_small <- make_hexbin(pbmc_small, 10, dimension_reduction = "PCA")
#' plot_hexbin_feature(pbmc_small, type="counts", feature="TALDO1",
#' action="median")
#' plot_hexbin_feature(pbmc_small, type="counts", feature="TALDO1",
#' action="median", lower_cutoff=0.2, upper_cutoff=0.5)
#' # For SingleCellExperiment object
#' \dontrun{
#' library(TENxPBMCData)
#' library(scater)
#' tenx_pbmc3k <- TENxPBMCData(dataset = "pbmc3k")
#' rm_ind <- calcAverage(tenx_pbmc3k)<0.1
#' tenx_pbmc3k <- tenx_pbmc3k[!rm_ind,]
#' colData(tenx_pbmc3k) <- cbind(colData(tenx_pbmc3k),
#' perCellQCMetrics(tenx_pbmc3k))
#' tenx_pbmc3k <- logNormCounts(tenx_pbmc3k)
#' tenx_pbmc3k <- runPCA(tenx_pbmc3k)
#' tenx_pbmc3k <- make_hexbin( tenx_pbmc3k, 20, dimension_reduction = "PCA")
#' plot_hexbin_feature(tenx_pbmc3k, type="logcounts",
#' feature="ENSG00000135250", action="median")
#' plot_hexbin_feature(tenx_pbmc3k, type="logcounts",
#' feature="ENSG00000135250", action="mode")
#' }
#' # For other modalities in Seurat object
#' library(Seurat)
#' data("pbmc_small")
#' pbmc_small <- make_hexbin(pbmc_small, 10, dimension_reduction = "PCA")
#' protein <- matrix(rnorm(10* ncol(pbmc_small)), ncol=ncol(pbmc_small))
#' rownames(protein) <- paste0("A", seq(1,10,1))
#' colnames(protein) <- colnames(pbmc_small)
#' pbmc_small[["ADT"]] <- CreateAssayObject(counts = protein)
#' pbmc_small <- make_hexbin(pbmc_small, 10, dimension_reduction = "PCA")
#' plot_hexbin_feature(pbmc_small, type="counts", mod="ADT",
#' feature="A1", action="prop_0")
plot_hexbin_feature <- function(sce,
mod="RNA",
type,
feature,
action,
title=NULL,
xlab=NULL,
ylab=NULL,
lower_cutoff = 0,
upper_cutoff = 1) {
out <- .extract_hexbin(sce)
cID <- .extract_cID(sce)
if(is.null(out)){
stop("Compute hexbin representation before plotting.")
}
x <- .prepare_data_feature(sce, mod, type, feature)
.plot_hexbin_feature_helper(x, feature, out, cID, action, title,
xlab, ylab, lower_cutoff, upper_cutoff)
}
.plot_hexbin_feature_helper <- function(x, feature, out, cID, action, title,
xlab, ylab, lower_cutoff, upper_cutoff){
if (action %in% c("mean", "median", "mode")) {
lowend <- quantile(x[x > 0], lower_cutoff)
highend <- quantile(x[x > 0], upper_cutoff)
x <- replace(x = x,
list = x < lowend,
values = lowend)
x <- replace(x = x,
list = x > highend,
values = highend)
}
hh <- .make_hexbin_function(x, action, cID)
out <- as_tibble(out)
if(grepl("^[[:digit:]]", feature )){
feature <- paste0("F_", feature)
}
feature <- gsub("-", "_", feature)
col_hh <- paste0(feature, "_", action)
func1 <- paste0("out$", col_hh, " <- hh")
eval(parse(text=func1))
.plot_hexbin(out, colour_by=col_hh,
title=title, xlab=xlab, ylab=ylab)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.